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Additive & Multiplicative Time Series

e Composed of trend (overall trend), seasonal (repeat seasonally - eg Diwali season), cyclic (similar to
seasonal but slower-moving - 10-20 years, recession) and irregulars (random)

e Additive: Y; =T + S; + Cy + I,

e Multiplicative: Y; = T3 x Sy x Cy x I

Decomposition of additive time series Decomposition of multiplicative time series
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Components

1. Trend Component

e (Consistent long-term upward/downward movement of data
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2. Seasonal Components

® Repetitive upward/downward fluctuations from the trend
e Within calendar year

e Festivals, seasons, customs, business practices, market

e [ndia: Oct-Dec demand

e (Conditions

Natural (weather)
Business and administrative procedures (school term)
Social/cultural (festivals)
Trading day effects (humber of weekends in a month)
o Moving holiday effects (Ramadan, Diwali, Easter)
e |dentify seasonal components: regularly spaced peaks and troughs

O O O O
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(b) Seasonality (fixed periodicity)
e Notice trend and seasonality

Monthly Retail Sales in New South
- Wales (NSW) Retail Department Stores
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Obvious large seasonal increase in
December retail sales in New South
Wales due to Christmas shopping

3. Cyclical Components

e Fluctuations due to macroeconomic changes
® Recession, unemployment

4. Irregular Components

White noise/random noise

Uncorrelated changes

Normal distribution with mean value of 0 and constant variance

After seasonal and trend components have been estimated and removed
Short term fluctuations in series (not systematic or predictable)
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(d) Irregular

Additive vs Multiplicative

e Multiplicative more often used, better fit

o Y; =T; x S; used
o Cyclic estimation - large dataset required
o Appropriate if seasonal correlated with level/local mean

Monthly NSW ANZ Job Advertisements
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= Original = Seasonally adjusted

The trend has the same units as the
original series, but the seasonal and
irregular components are unitless
factors, distributed around 1

e Additive only appropriate if

o Seasonal and cyclical independent of trend
o Seasonal remains constant about level/mean
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The underlying level of the series
fluctuates but the magnitude of
the seasonal spikes remain
approximately stable

Decomposition of TS Model

1. Additive decomposition

e \When amplitude of seasonal and irregular do not change with level
e Observed time series O;

o Ot:Tt+St+It
e Seasonally adjusted series SA;

o Observed — approximation for Seasonal S't
o SAt = Ot - St
o SAt = Tt + It

2. Multiplicative decomposition

e Amplitude of seasonal and irregular increase as the level of the trend rises
e Observed time series O;

o Ot:TtXStXIt
e Seasonally adjusted series

® SAt

o Observed =+ approximation for Seasonal S't

[e] SAt:%
o SAt:TtXIt



3. Pseudo-Additive decomposition

e Multiplicative model not used when data contains small or zero values

o Cannotdivide by 0
e Pseudo-additive combines additive and multiplicative

e Assumption: seasional and irregular independent of each other but dependent on trend
O =T+ Ty x (St — 1)+ Ty x (I; — 1)

Oy =Ty x (S¢ +1; — 1)

Both S and I, centered around 1

Subtract 1 from both to center around 0

e Example that requires pseudo-additive

O O O

o

Quarterly Gross Value for the Production of Cereal Crops
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This model is used as cereal crops are only produced

during certain months, with crop production being virtually
zero for one quarter each year.

Extraction of Time Series Components
Error Metrics

e Y, is actual value
e [ is forecasted value

1. Mean absolute error (MAE)
1 n
« MAB= 3 3 |Y: — F|

2. Mean absolute percentage error (MAPE)

(1Y
e MAPE = - Y (=5~ x 100%)
t=1



3. Mean squared error (MSE)

MSE = 1 3(v, — F,)?
t=1

4. Root mean square error (RMSE)

RMSE =+vVMSE

Forecasing Methods

1. Total Mean

Mean of total data
Good when there is no overall trend
Does not account for trend or seasonality

N
1
Fioi=+2Y
i=1

2. Simple Moving Average (SMA)

Mean of k most recent observations
Moving average value F} g
t

Fu=7 X Y

i=t—k+1
Large k: Infrequient fluctuations in series
To forecast Fyiq
Use error metrics to find optimal value of k
Each observation given equal importance

3. Weighted Moving Average

Each observation given a weight w;

Eg: Most recent observation given most weightage

1t
Fi1 = % Y, w;xY;
i=t—kt1



4. Single Exponential Smoothing

® «is smoothing constant

e No trend, no seasonal

e Weigh the most recent forecast F; and most recent observed value y;

e Fii=aY+(1—a)F;
Fia=aYi+(1—-a)(aYi1+(1—a)Fq)
Fia=aY,+a(l-a) Y1+ (1-a)? Fy

t—1

Frn=Ya(l-a)Y,
i=0

e |nfluence of
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FIGURE 13.3 Exponential decay of weights to older observations.

Pros

e Uses all historic data unlike SMA
® Assigns progressively decreasing weights to older data

Cons

® |ncreasing n makes forecast less sensitive to changes

® Lags behind trend

e Largern, larger lag

e Forecase bias and systematic error when strong trend/seasonality



5. Double Explonential Smoothing (Holt's Two Parameter ES)

e Builds trend into model
e Adds growth factor

e Level (intercept) equation

o Lt:aXYt—i—(l—Oé)XFt
e Trend equation

o Ty =B x (Lt — Ly1) + (1 —B) x T4
e The forecast for timet 4 1is

o Fi1=L;+T;
® The forecast fortimet +n

o Fiin=Li+nT

Sales of saws for the Acme Tool Company: 1934-2000
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Quarterly Saw Sales Forecast Holt's Methoa
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6. Triple Explonential Smoothing (Holt Winter's Method)

e cisthe duration/length of seasonality

6.1 Multiplicative

e Level (intercept) equation
Y,
St—c
e Trend equation
o Ty =B x (Lt — Li1) +(1—B) xTy 4
e Seasonal equation

o i =«

+ (1 —a) [L-1 + Ty

Y;
o St:’)’L—t+(1_’Y) Si—c
t

e Forecast Fy g

o Fypy = [Li+ Ty x St
e |nitialisations for HW Method

o Example of annual seasonal index (12 months)

(0] Lt — }/;5
1
OLt:—(Y1+Y2+... —f—Y'C)
Yi-Y . Yi1-Y .1 Yio—-Y .o Yi ci1—Yi o1
el e 12 + 12 et 12 ]

e Example



a=04, B=0.1, y=03 \
and RMSE = 83.36 | EAAVERY

Quarterly Saw Sales Forecast Winter's Method
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6.2 Additive

Level (intercept) equation
o Li=a(Y; —Si—c) + (1 —a) (Li—1 +Ti-1)
Trend equation

o Ty =px (Lt — Li1) + (1) xT 4
Seasonal equation

o Sp=7Ye— L)+ (1—7) S
Forecast F}

° Ft+m =L+m thl + St+mfc

Initial values
[e] Lt = Yt
1 Y%.-Y . Y .-Y .1 Yio-Y .o Yi 1 —Yioc1
T, = — ...
o Ti=2l—p 12 + 12 et 12 ]
o 51=Y1— L
o Sz = Yg — Lc
o Sc - ch - Lc

Predicting Seasonality Index Using Method of Averages



The seasonality index based on first 3 years of data using method of averages is shown in Table 1.

Sale Quantity  Sale Quantity  Sale Quantity

Month 2012) o13) 2014) Monthly Average ¥,  Seasonality Index ¥, /¥
January 3002666 4447581 4634047 4028098.00 1.087932
February 4401553 3675305 3772879 3949912.33 1.066815
March 3205279 3477156 3187110 3289848.33 0.888541
April 4245349 3720794 3093683 3686608.67 0.9957
May 3001940 3834086 4557363 3797796.33 + 102573
June 4377766 3888913 3816956 4027878.33 1.087872
July 2798343 3871342 4410887 3693524.00 0.997568
August 4303668 3679862 3694713 3892747.67 1.051375
September 2958185 3358242 3822669 3379698.67 0.912808
October 3623386 3361486 3689286 3558053.33 0.960979
November 3279115 3670362 3728654 3559377.00 0.961337
December 2843766 3123966 4732677 3566803.00 0.963342
Average of monthly averages 3702528.22

Seasonality index can be interpreted as percentage change from the trend line.

For example, the seasonality index for January is approximately 1.088 or 108.8%.

This implies that in January, the demand will be approximately 8.8% more from the trend line.
The seasonality index for March is 0.8885 or 88.85%.

® Steps

- STEP1

» Calculate the average of value of Y for each season that is, if the data
is monthly data, then we need to calculate the average for each month
based on the training data.

 Letthese averagesbe Y, Y, Y5 Y,

+ STEP2

+ Calculate the average of the seasons’ averages calculated in step 1
(say Y).

« STEP3

+ The seasonality index for season k is given by the ratio Y, / Y .

+ to the procedure explained above is first divide the value of Y; with its
yearly average and calculate the seasonal average

« We will use first 3 years of data to calculate the seasonality index for
various months.

e Parameter tuning for o, 8 and «y



7. Croston's Forecasting Method for Intermittent Demand

e Intermittent demand: spare parts, diyas, Christmas trees
e Exponential smoothing will produce bias
® Two components

o Predicting time between demands
o Magnitude of demand
e Forecast: mean demand per period

e Symbols

Y; = demand at time t (maybe 0)
F’; = forecasted demand (predicted)
T D, = time between latest and previous non-zero demand in period t
FTD, =forecased time between demand in period t
e Steps:
o IfY; =0then F; 1 = Fyand FTD;.1 = FTD,
o IfY; #0then Fyy1 =aY;+ (1 —a) Frand FTDy; = BTD; + (1 — B) FT D,
e Mean demand per period Dy

O O O

o

Question

e Quarterly demand for spare parts of avionics system of an aircraft
e Use demand during Q1 to Q4 to forecast for quarters 5 to 16 using Croston's method

Quarter 1 2 3 - 5 6 7 8
Demand 20 12 0 18 16 0 2 2
Quarter 9 10 n 12 13 14 15 16
Demand 0 28 0 0 30 26 0 34

TABLE 13.8 Quarterly demand for avionic system spares

e Zerodemand:3,6,9,11,12,15



« Procedure used for starting values of F,and FTD,is %t maé D M ¥

1
shown in the table here: )
3 0
:

+ TD, = 2 since the elapsed time from the previous
18 ) 15 168

demand and current demand period is 2 (4 — 2).
TD,=2,FTD,=1.5,and F, = 16.67
Let a= = 0.2. Then

the average TD;values up to t = 4. F, =0.2 x18+(1-0.2)*16.67 = 16.936

* The forecasted time between demand is

« So, FTD, = (1+2)/2 =1.5. FTD.=02x2+(1-02)x15=1.6
* The forecasted demand F, fort=4is

(20 + 12 + 18)/3 = 16.67.
* Note that the total value is divided by 3 (not 4) since only

3 quarters had non-zero demand.

* So, the starting values for Croston’s method are.

Forecasted demand for periods 5 to 16 using Croston’s method.

Quarter Demand D, FTD, i D,= (F/FTD)

1 20

2 12 1

3 0

a 18 2 1.5000 16.67 11.11333

5 16 1 1.6000 16.936 ° 10.585

6 0 1.4800 16.7488 1131676

7 20 2 1.4800 16.7488 1131676

8 22 1 15840  17.39904 10.98424

° 0 14672 1831923 12.48585
10 28 2 1.4672 1831923 12.48585
1 0 15738 20.25539 12.8707
12 0 15738  20.25539 12.8707
13 30 3 15738  20.25539 12.8707
14 26 1 1.8590  22.20431 11.94417
15 0 16872  22.96345 13.61034
16 34 2 1.6872 2296345 13.61034

Question



« Example: lubricant sales
» Several years ago, an oil company requested forecasts of monthly lubricant sales

* One of the time series is shown in the table below.
* The data contain small counts, with many months registering no sales at all, and

only small numbers of items sold in other months.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 0 2 0 1 0 1 0 0 0 0 2 0
2 6 3 0 0 0 0 0 7 0 0 0 0
3 0 0 0 3 1 0 0 1 0 1 0 0

* There are 11 non-zero demand values in the series, denoted by q.

* The corresponding arrival series a is also shown in the following table.

* Applying Croston’s method gives the demand forecast 2.750
and the arrival forecast 2.793.

« So the forecast of the original series is gT+h|T = 2.750/2.793 = 0.985

InR

® tsinterminent package R

Case studies - Power of seasonality index



1. Forecasting study 1

e Following are the weekly attainment figures: Week 1: 75% Week 2: 77% Week 3: 79%

Week 4: 81%.

e \What was amiss? What is the real-life forecasting story?

CASE 1 : Forecast over-indexed in April

April Forecast and Actuals Comparison
FY19 Forecast FY19 Actuals FY18 Actuals [FY17 Actuals
April Average(Mn) 16.5 15.5 15.6
Year Average(Mn) 18.6 18.4 19.1
April Seasonality 81% 80%
* Here is what happened: As we can see from the image,
» April forecast seasonality was over indexed by 11%, i.e. at 89%
of yearly average while actuals were trending towards 78%.
» What does a seasonality index mean?
Seasonality Index Calculation
FY19 Forecast FY19 Actuals FY18 Actuals [FY17 Actuals
Week 1(Mn) 18.2 17.1 18.5 17.9
Week 2(Mn) 18.4 17.0 17.6 18.7
Week 3(Mn) 19.6 16.5 12.5 18.6
Year Average(Mn) 18.6 18.4 19.1 19.5
& I I <
Week 1 98%| _______93% 97% 92%
Week 2 99%[=F73/F$75 | 92% 96%
Week 3 105% % 91% 95%

Sl: Normalised

e Divide each number by their yearly average to calculate the index

2. Forecasting study 2




Events Recommended

m FY19 Spends Seasonality ~ m FY19 Sales Seasoanlity

134%
115%
105% 106%
92% 93%
82%
63% 64%
51%
Memorial Day July Black Friday Llabor Day Martin Luther King Jr. Day President's Day
Wk22 Wk28 Wk36 Wk03 Wko8

e Conclusions

o High proportion of marketing on black friday
o Reallocate the spends from July Black Friday day to President's week, for higher ROI

Regression for Forecasting

e Forecastattimet

o Fy =80+ p1 Xu+B2Xot+ ... +Bn X
e Example

o Fy = By + B1 x (promotion_expenses;) + B2 X (competition_promotion;)

(o]

Model R R-Square  Adjusted R-Square  Std. Error of the Estimate  Durbin—Watson

1 0.928 0.862 0.853 207017.359 1.608

o Two factors not entirely independent

o Need high R? for forecasting (this is high enough)

o [f DW =2, no autocorrelation exists

o D =1.608 =>no autocorrelation between errors

o Autocorrelation leads to inclusion of nonsignificant variables in the equation

o Standard error of regression coefficient is underestimated

Unstandardized Coefficients  Standardized Coefficients

Model t Sig.
B Std. Error Beta

(Constant) 808471.843 278944.970 2.898 0.007

1 Promotion Expenses 22432941 1953.674 0.825 11.482 0.000

(ompetition Promotion —212646.036 77012.289 —0.198 -2.761  0.009



(o]

o If competition spends more, sales reduce

6000000 A

F =808471.843+22432.941X,, —212646.036X,,

5000000 4
/> e
X, = Promotion expenses at time ¢ 1000000 7
1t e

3000000 A
1 Competition is on promotion
710  Otherwise

2000000 A

1000000 -+

0

T T T
35 39 43 47

* Sales increases when promotions expenses
increase and the sales decrease when the T Seles Quantiy (Y Forecast ()
competition is on the promotion.
Comparing methods
e For given example, regression performs better
Method MAPE RMSE
Moving Average 734725.84 14.03%
Exponential Smoothing 742339.22 13.94%
Regression 302969 4.19%

Forecasting with Regression - Seasonality

Steps:

1. Estimate the seasonality index (using method of averages or ratio to moving average)

2. De-seasonalise the data using additive or multiplicative model (eg: de-seasonalised data in
Y;
multiplicative: Yq ¢ = 5, where S} is the seasonality index for period t)
t

3. Develop a forecasting model on de-seasonalised data F
4. The forecast for period ¢ + 1is Fiy1 = Fgz41 X Si11 (re-seasonalise)

Autoregressive Models

® Regression of variable on itself (AR)
® Assumption: time-series is assumed to be a stationary process

o If TS data not stationary, must be converted to stationary before applying AR models
e Assumption: errors follow white noise (normal distribution: € ~ N(0, o2))



Conditions for Stationary Time-Series data Y;

1. Means of Y; at different values of ¢ are constant

2. Variances of Y; at different time periods are constant (homoscedasticity)

3. Covariance of Y; and Y;_j, for different lags depend only on k and not on time ¢ (only the interval and
not the time)

Concept of Stationarity

e Strictly stationary: distribution of values remains same as time proceeds
e Weakly stationary:

1. Constant mean: E(y:) = u

2. Constant variance: E(y; — u)* = o2

3. Constant auto covariance structure: E(yﬂ - ,Lb) (ytz - M) = Y11, Vt1,to
e Point 3: covariance between y; 1 and y;_» being the same as y;_5 and y;_¢
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Stationary Series Non-stationary Series

e Graph 2 has an upward trend
e |[fvariables in OLS are not stationary, high R? and low DW statistic indicate high autocorrelation

o Caused by drift in variables
® Determine if signal is stationary

o Plotting
o Assesing autocorrelation function
o Use DF, ADF tests on significance of autocorrelation coefficients

Example: which of the following are stationary?

e Source: https://otexts.com/fpp2/stationarity.html



https://otexts.com/fpp2/stationarity.html
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(a) Google stock price for 200 consecutive days

e Upward trend

(b) Daily change in the Google stock price for 200 consecutive days

e Stationary (first order differenced)

(c) Annual number of strikes in the US

e Seasonality and trend

(d) Monthly sales of new one-family houses sold in the US

e Seasonality

(e) Annual price of a dozen eggs in the US (constant dollars)

e Downward trend

(f) Monthly total of pigs slaughtered in Victoria, Australia

e Seasonality, trends, levels
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(g) Annual total of lynx trapped in the McKenzie River district of north-west Canada



e Non-stationary upon first glance

e (Cycles are aperiodic — they are caused when the lynx population becomes too large for the available
feed, so that they stop breeding and the population falls to low numbers, then the regeneration of
their food sources allows the population to grow again, and so on

e In the long-term, the timing of these cycles is not predictable

e Hence the series is stationary

(h) Monthly Australian beer production
® Trend, seasonality
(i) Monthly Australian electricity production

e Trend, seasonality

ACF and PACF

e ACF: autocorrelation function
e PACF: partial autocorrelation function

ACF at lag k
e Stationary TS: ACF function of lag and not time
Vi covariance at lag k
® Prp=— = -
Yo variance
n —_— —_—
> Y —Y)(Y; -Y)
t=k+1
[ ] Pk =

é(n—ﬁ?

e ACF between -1 and 1
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Correlogram

e ACF against k - sample correlogram

1.5

1
(1
‘&’ 0.5 \
0 -

-0.5 5 5 A9 N

e Determine stationarity: if ACF falls immediately from 1 to 0 and then equals about 0 thereafter, series
is stationary

e |f ACF declines gradually from 1 to 0 over a long period of time, it is not stationary

® Plot shown above: stationary

Statistical Significance of ACF
e Q-statistic: if sample ACFs are jointly equal to 0
ULNNN
* Q=n) pi
k=1

o n:sample size
o m:laglength
If jointly equal to O, TS is stationary

Null hypothesis: sample ACFs jointly equal O

Follows x?(m): m degrees of freedom

PACF

e Partial Autocorrelation Function

e Correlations between observations k time periods apart after controlling for correlations at
intermediate lags

e First order (k=1) ACF and PACF are same
e Second order (k=2) PACF
cov(yt, Yi—2(ye-1)
\/v‘”'(yt|yt71) var(Yi—2|yi-1)

o




e Partial correlogram (Box-Jenkins methodology)

AR, MA and ARMA Model

1. AR (Autoregression)

® Assumption: stationary
e Model: (no level or trend = B¢ = 0)

°© Yir1=BY:i+ e
e |[flevel/mean present

o Yijg—p=p8x(Y:—p)+ e
e Expanding Y;

o Yisi—p=Bx(Bx (Yie1—p) +e)+ €
e Expanding fully

o Vi —pu=p%o—p)+ ﬂtj? + B2+ ... + Ber + €1
o Vijn—pu=8o—p)+> 38 F xe+en
e Practical purposes: || < 1

e The second part of the equation can also become infinitely large if the errors do not follow a white
noise

Estimating

n

. §€?=Z[(E—u)—ﬁX(1@—1—u)]2

t=2

e Take derivative and equate to 0, solve for 3
n

) ;(Yt_ﬂ)(Yt—l_F’/)
° IB:t_ ~

Y (Y1 — p)?

t=2

AR Model Identification

ACF:
n _ —
2 (Y =Y)(Y: - Y)
° pp = AR — : autocorrelation coefficient for order k
> (Vi —Y)?
t=1
® H() PR = 0

° Ha:pk#ﬂ



o 1.96
e Null hypothesis rejected when |pg| > —

Vn

PACF: partial autocorrelation of order k

1.96
e Null hypothesis rejected when |ppr| > ——

NZD

Order of AR(p)

® ACF: spikes decay towards zero, coefficients may oscillate
® PACF: spikes decay to zero after lag p

Example

Build an auto-regressive model based on the first 30 days of data and forecast the demand for continental
breakfast on days 31 to 37. Comment on the accuracy of the forecast.

Day Demand (B Day Demand (B
1 25 20 83
2 25 21 4
3 25 22 46
4 35 23 4
5 41 24 40
6 30 25 32
7 40 26 4
8 40 27 4
9 40 28 40

10 40 29 A3

n 40 30 46

12 40 31 45

13 < 32 45

14 49 33 46

15 50 34 3]

16 45 35 40

17 40 36 4

18 4 37 4

19 40

e Finding p using ACF and PACF plots (first 30 observations)



. Continental B/F
Continental B/F

1.0 4
1.0 -
0.5 - 05 |
T8
Q
< .
Q
0.0 - %0_0 '—u,_l'_"é'_'g -
f L]
-0.5
-0.5
-1.0
1 2 3 4 5 6 7 8 9 10 101
Lag number 1 2 3 4 5 6 7 8 9 10
Lag number
ACF PACF
e (ritical values: horizontal lines
e Reject null hypothesis where vertical bar beyond critical values
e ACF: spikes decay towards zero, coefficients may oscillate
e PACF: spikes decay to zero after lag p
e PACFhitslagO0at2 — p=1
e . .modelis AR(1)
Results of AR(1)
Model Fit Statistics
Model -
R-Square RMSE MAPE Normalized BIC
Continental B/F-Model_1 0373 5.133 10.518 3.498

e Left: using actual value Y%, right: using forecasted value F} (here, k = 1)




(F,,, —38.890) =0.731(Y, - 38.890)
Day v, 3 (Y, —F) v —FJy,
3 45 4408741 0832821 0.02028
32 45 43.35641 2701388 0.036524
3 46 43.35641 6.988568 0057469
34 8 4408741 1.182461 0025289
35 40 4189441 3.588789 0.04736
36 f 39.70141 1.686336 0031673
37 # 4043241 0322158 0.013844

MAPE 1.5721
RMSE 0.0332 (3.32%)

Example of AR Model

60000

50000

40000

30000

20000

10000

2. MA (Moving Average)

e Dependent model regressed against lagged values of past terms or error terms
* MA(q)
e Modelling the errors and not the terms themselves

o Yiy1 =p+ou€r + €t

AR Process

(F,, - 38.890) = 0.731(F,_, - 38.890)
Day 4 F (Y~ F)? v —FJy,
31 45 44.0874 0.8328 0.0203
32 45 42.6893 5.3393 0.0513
33 46 41.6673 18.7723 0.0942
34 43 40.9202 4.3256 0.0484
35 40 40.3741 0.1399 0.0094
36 4 39.9749 1.0509 0.0250
37 4 39.6830 1.7344 0.0321

MAPE 2.1446

RMSE 0.04009 (4.009%)

1 2 3 45 6 7 8 9101112131415161718192021222324252627282930

AR(1) yi=al* yy4
AR(2) y= al* yq +a2* y,

AR(3) yi=al* y., + a2* y,, +ad"y,,

e MA(q) given by



°o Yiii=ptoaret+aoae 1+ ... +og€gr1+€q1

Order of MA(q)

e ACF: spikes decay to zero after lag of q
e PACF: spikes decay towards zero, coefficients may oscillate

Example of MA Model

MA Process

1200
1000 \W
800
600
400

200

1 2 3 456 7 8 9101112131415161718192021222324252627282930

MA(1) £, = b1*e,,
MA(2) £,= b1, + b2*,.,
MA(3) &= b1*€t-1 + b2*£t_2+ b3*£t—3

3. AR(p) and MA(q) - ARMA(p.q)

Stationary time series - ACF and correlogram, Q-statistic
AR(p): p lags of the dependent variable

MA(q): g lags of the error term

ARMA(p, q): autoregressive, moving average

Auto Regressive Part Moving Average Part
A A

N N

Py r r
Y =BY, +BY _  +.+BY _ . toEtaE +.taE | +E

t—q+1 t+1

o
.

Auto-correlation value,

oA ’ >1.96/~/n for first q values (first q lags) and cuts off to zero.

2. Partial auto-correlation function,

Pk ‘ >1.96/ & for first p values and cuts off to zero.



Summary of Parameter Selections for AR, MA and ARMA

Model ACF PACF
Spikes decay towards zero.  Spikes decay to zero
AR (p) . . fter la
Coefficients may oscillate. ~ ater 1ag p
Spikes decay to zero after Spikes decay towards
MA (gq) lag q Zero.
Coefficients may
oscillate.
Spikes decay (either

Spikes decay (either direct
ARMA (p,q) or oscillatory) to zero
beginning after lag g

direct or oscillatory)
to zero beginning

after lag p

0.6
0.5 *
0.4 1
031 m

021 =

0.1 - ll!l....ll.....-lllI'l!!!.'lllll

—0.1 1
-0.2 +—-r-—+r—1—7—7"7—r—TT T T T T T T T T T

1 3 5 7 9 11 13 1517 19 21 23 25 27 29 31 33 35

ACF

Summary of AR, MA and ARMA Models



Autoregressive AR process:
+ Series current values depend on its own previous values
* AR(p) - Current values depend on its own p-previous values
* P is the order of AR process
Moving average MA process:
* The current deviation from mean depends on previous deviations
* MA(q) - The current deviation from mean depends on g- previous deviations
« qis the order of MA process

Autoregressive Moving average ARMA process

Example of ARMA

Month Demand for Spares Month Demand for Spares

Monthly demand for 1 457 20 516
avionic system spares 2 439 21 656
used in Vimana 007 3 404 22 558
aircraft is provided. 4 392 23 647
Build an ARMA model 5 403 24 864
based on the first 30 6 371 25 610
months of data and 7 382 26 677
forecast the demand 8 358 27 609
for spares for months 31 9 594 28 673
to 37. Comment on the 10 482 29 400
accuracy of the forecast. 11 574 30 443
12 704 31 503
13 486 32 688
14 509 33 602
15 537 34 629
16 407 35 823
17 523 36 671
18 363 37 487
19 479

1. Plot ACF and PACF (use confidence limits)



O Coefficient

D30141135-Model_1

D30141135 D30141135
1.0 4 1.0
05 . 0.5
w
I S| .
0.0 I ._[_I (0= £ 00 | [1 —
s Lt e
(5]
< e
0.5 4 -0.5
-1.0 4 -1.0 1
12345 678 9101112131415 16 1234567 8 91011121314 15 16
Lag number Lag number
FIGURE 13.9 ACF plot for avionic system spares demani FIGURE 13.10 PACF plot for avionic system spares demand.
2. Forecast ARMA (1, 2)
Model Fit Statistics 000
Model T
Stationary R-Squared RMSE MAPE 8000
Avionic Spares 0429 98.824 1431 7000
5 600.04
z
TABLE 13.26 \ model parameters 50004 -~
Esimate  SE T Sig. wool
ot 0GR SIS 86000 BRI 00 0 5
ionic Spares AR Llagl 0.706 0.170 4153 0.000 o Observed - Fi Date
MA l‘-ﬂ 0.694 0173 4.006 0.000 FIGURE 13.11 Observed versus forecasted demand.
Lag2 -0727 0.170 —4.281 0.000

All the three components in the ARMA model (AR lag 1 and MA lags 1 and 2) are
statistically significant (Table 13.26). The model equation using SPSS is given by

Y,

t+1

—496.669=0.706 x (Y, —496.699)—0.694 X £, +0.727 X §,_, (13.45)

3. Compute MAPE, RMSE

—Upper confidence limit
——Lower confidence limit



il ARMA(T, 2) model forecast ‘Ihe torecasted values using F, instead of Y, when lorecasting for more than one

Month Y, F (¥ —F) v —Fp, period ahead in time are shown in Table 13.28.
3 503 4648107 145843 0075923 A (1.2) forecst
n 688 3785341 9576915  0.449805 proey v F VR A,
5| 602 MG MR 02614 3 503 4644239 14881147 00767
u &9 BSES1  IBEO® 0090437 ) 688 AT 962008258 04508
3 83 73514 6318281 0.096583 - _ e S
34 629 687080 33881980  0.0925
3% 671 607183 1622614  0.060032
35 3 7449583 60904998  0.0948
37 487 6493491 2635722 0333366 3 671 6305592 16354571  0.0603

37 487 6483959  26048.6313 03314
The RMSE and MAPE for the validation data (months 31 and 37) are 150.961

0.1953 (19.53%), respectively (Table 13.27).

The RMSE and MAPE for the validation data (months 31 and 37) are 151.02 and
0.1954 (19.54%), respectively.

Concept of Stationarity, DF, ADF

1. Identifying Stationarity using ACF

Data
O Coefficient
1.0 — Upper confidence limit
— Lower confidence limit
0.5
S
Z 0.0
-0.57
-1.07

Lag number

e Slow decline and no cut-off to 0 = non-stationarity



2. Quantitative Test - Dickey-Fuller (DF) Test

e AR(1) defined as
o Yin=p8Y:+en
e If|B| > 1, AR(1) process can become very large
e If || = 1, non-stationary
e DF testis hypothesis test
o Hj: =1 (time-series is non-stationary)

o H,: B < 1(time series is stationary)

e AR(1) written as
o Vi1 —Y; =AY, = (B-1)Y; + €11 =¥Y; + €1
[e] ’[p = /B — 1

e DFtestin terms of ¢

o Hj : 1 = 0 (time-series is non-stationary)
o H, : 1 < 0 (time series is stationary)

e DF test statistic =

Y
Se()
e S.(1) is the standard error of 1)

3. Augmented DF (ADF) Test

e DF test only valid if residual €;11 follows a white noise
e When €4, is not white noise, actual series may not be AR(1)
o May have more significant lags

e Solution: augment p-lags of the dependent variable Y

p
o AY; =Y, + > a;AY; ;i + €11
i=0
e Augmented DF test hypotheses

o Hj : 1 = 0 (time-series is non-stationary)
o H, : 1 < 0 (time series is stationary)

Differencing - Transforming Non-Stationary Signal to
Stationary

e Order of differencing d to convert a non-stationary signal to a stationary signal
e |eft and right difference (usually left difference)
e Due to trend

o De-trending: fit a trend line and subtract it from the time-series



e QOtherwise

o Differencing TS process into difference stationary

1. First Difference

e d=1
e Difference between consecutive values of the TS
e VY; =Y, —-Y

2. Second Difference

d=2

Difference of first differences

V%Y, = V(VY;) = (Y; — Yi1) — (Y1 — Vi)
VY, =Y, —2Y, 1+ Y,

Differencing Example

® Source: https://otexts.com/fpp2/stationarity.html

Series: goog200 Series: diff(goog200)
1.00- L T
0.75- Bi0S
0.05-
%0.50- % - I | | |
< I | ' | |
025 ‘- CLLLLL CC N _005 -
0.00 -0.10~-
e e —— 0154 TT T TTT RIS T TR TS
0 5 10 15 20 0 5 10 15 20
Lag Lag

e The ACF of the Google stock price (left) and of the daily changes in Google stock price (right)
e The ACF of the differenced Google stock price looks just like that of a white noise series
e No autocorrelations outside 95% confidence interval


https://otexts.com/fpp2/stationarity.html

2000,

4000

5000

H000;

10000

Level First-difference Second-difference

Random Walk Model

Differenced series VY; =Y/ =Y; — Y3 4
First order differenced has only T" — 1 values (from second observation)
If differenced series is white noise, model for original series

o Yi—Yi1=¢
Rearranging: random walk model

oY, =Y 1+¢
Used for non-stationary data (financial, economic)

Random walks

o Long periods of apparent trends
o Sudden unpredictable changes in direction
Forecast of RW model: previous observation

Future movements unpredictable

Used as a benchmark to compare other models' performance

Random Walk Model with Non-Zero Mean

Mean ¢
Y- Y 1=c+t+e
Yi=Y, 1+tc+e

Value of cis average of changes between consecutive observations

150 1000




e Ifc > 0, average change is an increase in the value of Y;

o Y, tends to drift upwards
e Else, drifts downwards

ARIMA Model

Auto Regressive Integrated Moving Average Model

ARIMA(p,d,q)

Integrated ([) series: series which needs to be differenced to be made stationary
Lags of the stationarised series are called AR terms

Lags of the forecast errors are called MA terms

Step 1: Model Identification

e |dentify right values of p, d, q

d=0
Identify the values of pand g
The model is ARIMA(p,0,q)
model or ARMA(p,q) model

Plot the ACF and PACF Is the process stationary

Identify the order of
differencing (d) required to
make the process stationary

_| Identify the values of pand q
The model is ARIMA(p,d,q)

FIGURE 13.14 Model identification in ARIMA model.

Step 2: Parameter Estimation and Model Selection

e Estimation of coefficients in AR and MA using OLS

e (riteria: RMSE, MAPE, Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC)
o AIC, BIC: measures of distances from actual values to forecasted values
o AIC = —2LL + 2K where

= L L isthe log likelihood function

» K is number of parameters (orders) estimated (p + q)
o BIC = —2LL + Kln (n)

® 7 is number of observations



= Higher penalty than AIC for every additional variable added to model
o Low values of AIC, BIC preferred

Step 3: Model Validation

e Satisfy all regression conditions
e Goodness of fit test: Ljung-Box test

ARIMA Filtering Box

e Think of p, d and g as knobs
® Adjust knobs until residuals are white noise

1 1 1
e e e —
p d q

time series “signal’
(forecasts)
constant? | X
Objective: adjust the knobs until the “noise’
(residuals)

residuals are “white noise” (uncorrelated)

ARIMA Models

1. ARIMA(0,0,0) + c = constant model

o Yi1 =c+ €1

2. ARIMA(0,1,0) = random walk model
o Yiy1 — Y =€

3. ARIMA(0,1,0) + ¢ =random walk with drift
o Yiin—Yi=c+eq

4. ARIMA(1,0,0) + c=regress Y on Y5
o Viii=p1Yi+tct+e

5. ARIMA(1,1,0) + c=regress Yyrs1 0N Yyif1 tag1
o Vi1 —Yi=p01x (Vi Y1) +c+ €

6. ARIMA(2, 1, 0) + c=regress Ydiffl on Ydifflfla,gl and Ydifflfla,gZ
o AY; 1 = B1AY; + B AY; 1 +c+ €41

7. ARIMA(0,1,1) = SES model

o Vi1 — Y= -1 + €1
o Viii—ep1=Fip =Y — a1 (Y — Fp)



o Fiyi=1-a)Y; +a1F;
8. ARIMA(0,1,1) 4 ¢ = SES model with constant linear trend

9. ARIMA(1,1,2) = LES with damped trend
10. ARIMA(0,2,2) = generalised LES

e Usually,p+qg <2
e |[f differenced, it must be un-differenced

Rules of Thumb

e |[f stationarised series has positive autocorrelation at lag 1, AR terms oftern work best

o Compensate for the lack of nonseasonal difference
e |[f stationarised series has negative autocorrelation at lag 1, MA terms oftern work best

o Fine-tune the effect of nonseasonal difference
® | ook at 05.1 slides

SARIMA Model

e Seasonal ARIMA
e Seasonality

o P:number of seasonal autoregressive terms
o D: number of seasonal differences

o :number of seasonal moving average terms
e Complete model: SARIM A(p,d, q)(P, D, Q)

e Filtering box (tune like knobs)



1 1 1
P d q
s s

time “signal”
series 0 \4 ’ '/ 1 0 \‘ ’/ 1 0 \‘ >/ 1 (forecasts)
P D 0 \

constant?| X| “noise”

Note that P, D, and Q should never (residuals)
be larger than 11l

Seasonal Differences

e Combine non-seasonal and seasonal differences

s is the seasonal period,

If @=0, D=1: ye=Yi—Yes e.g., s=12 for monthly data

If d=1, D=1: vi= (Y= Y1) — (Yez— Yic))
=Y —Yu-Y.t+ Y.,
D should never be more than 1, and d+D should never

be more than 2. Also, if d+D =2, the constant term
should be suppressed.



SAR and SMA terms

e Setting P = 1 (SAR) adds multiple of y;_ to the forecast for y;
e Setting ) = 1 (SMA) adds a multiple of €;_ to the forecast for y;
® SAR + SMA should never exceed 1

Ljung-Box Test for Autocorrelations

e Checks if auto-correlations are non-zero
e Null and alt hypotheses

o Hj: model does not show lack of fit (model is a good fit)
o H,: model shows lack of fit

e Test statistic: ()-statistic

m pi

o Q(m)=n(n+2) 3"

—1n—k

m is total number of lags

n is number of observations

k is number of lags

P is the autocorrelation of lag k

e (Q-statistic is chi-square distribution with m-p-q degrees of freedom

(o]
o
o
(o]

* The Q-statistic for ARIMA(1, 1, 1) is 10.216 (Table 1) and the corresponding p-
value is 0.855 and thus we fail to reject the null hypothesis.

» Table 1: ARIMA (1, 1, 1) model summary for Omelette demand

Model Model Fit Statistics Ljung—Box Q(18)
ode

R-Squared  RMSE MAPE  Statistics Df Sig.
Omellette-Model 1 0.584 3.439 20.830 10.216 16 0.855

* Q(m) measures accumulated auto-correlation up to lag m.

Thiel's Coefficient

e Comparision of forecasting model to naive forecast
e Fiau=Y;



Day Y, ARMA (1,2) Forecast (¥ —F) Naive Forecast (F,, =V) (Y —F)

31 503 464.8107 1458.423 443 3600
32 688 378.5341 95769.15 503 34225
33 602 444.6372 24763.04 688 7396
34 629 685.8851 3235.909 602 729
35 823 743.5124 6318.281 629 37636
36 671 630.7183 1622.614 823 23104
37 487 649.3491 26357.22 671 33856
Total 159524.6 Total 140546

e U-statistic

[e]

Ratio of SSE of forecasting to SSE of naive model
If U < 1, forecasting doing better than naive
If U > 1, forecasting doing worse than naive

o

o

The X Factor (ARX, ARIMAX)

e X:exogenous variables
e Other factors that influence the forecast (domain knowledge)
e How to integrate it into the model?

Spectral Analysis of TS Data

Discrete Fourier Transform of the Time Series

® Function of time to function of frequencies

® Discrete FT of time series ¢y, ... , Ty
n
o d(w)) = v/m Y, weed <2
t=1

o d(wj) =+/nd. zicos(j2rw;t) — jv/nY. z¢sin (j 2mw;t)
t=1 t=1
e Periodogram: I(w;)

o |d(w;)|* = di(w;) + d(w;)

o Cosine and sine components, re and im components

o If no periodic trend in data, E[d(w;)] = 0 and periodogram expresses variance of x; at
frequency w;



o If periodic trend exists, E[d(w;)]is the contribution to the preiodic trend at the frequency w;
e Eg: The series is n = 128 values of brain cortex activity, measured every 2 seconds for 256 seconds. A
stimulus, brushing of the back of the hand, was applied for 32 seconds and then was stopped for 32

seconds. This pattern was repeated for a total of 256 seconds. The series is actually the average of this
process for five different subjects.
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Wavelet Transformation

e Finite portion of a signal
e Similar to FT
e Read slides for more



More

DL

Classifier chains
MDP, RL

Read slides
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