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Additive & Multiplicative Time Series  
Composed of trend (overall trend), seasonal (repeat seasonally - eg Diwali season), cyclic (similar to 
seasonal but slower-moving - 10-20 years, recession) and irregulars (random) 
Additive: 
Multiplicative: 

 

 

Components  

1. Trend Component  

Consistent long-term upward/downward movement of data



 

2. Seasonal Components  

Repetitive upward/downward fluctuations from the trend

Within calendar year

Festivals, seasons, customs, business practices, market

India: Oct-Dec demand

Conditions

Natural (weather)
Business and administrative procedures (school term)
Social/cultural (festivals)
Trading day effects (number of weekends in a month)
Moving holiday effects (Ramadan, Diwali, Easter)

Identify seasonal components: regularly spaced peaks and troughs

 



Notice trend and seasonality

3. Cyclical Components  

Fluctuations due to macroeconomic changes
Recession, unemployment

 

4. Irregular Components  

White noise/random noise
Uncorrelated changes
Normal distribution with mean value of 0 and constant variance
After seasonal and trend components have been estimated and removed
Short term fluctuations in series (not systematic or predictable)



Additive vs Multiplicative  

Multiplicative more often used, better fit

 used
Cyclic estimation - large dataset required
Appropriate if seasonal correlated with level/local mean

Additive only appropriate if

Seasonal and cyclical independent of trend
Seasonal remains constant about level/mean



 

 

Decomposition of TS Model  

 

1. Additive decomposition  

When amplitude of seasonal and irregular do not change with level

Observed time series 

Seasonally adjusted series 

Observed  approximation for Seasonal 

 

2. Multiplicative decomposition  

Amplitude of seasonal and irregular increase as the level of the trend rises

Observed time series 

Seasonally adjusted series 

Observed  approximation for Seasonal 



 

3. Pseudo-Additive decomposition  

Multiplicative model not used when data contains small or zero values

Cannot divide by 0
Pseudo-additive combines additive and multiplicative

Assumption: seasional and irregular independent of each other but dependent on trend

Both  and  centered around 1
Subtract 1 from both to center around 0

Example that requires pseudo-additive

 

Extraction of Time Series Components  

Error Metrics  

 is actual value
 is forecasted value

1. Mean absolute error (MAE)  

2. Mean absolute percentage error (MAPE)  



3. Mean squared error (MSE)  

4. Root mean square error (RMSE)  

 

Forecasing Methods  
 

1. Total Mean  

Mean of total data
Good when there is no overall trend
Does not account for trend or seasonality

 

2. Simple Moving Average (SMA)  

Mean of  most recent observations 
Moving average value 

Large k: Infrequient fluctuations in series
To forecast 
Use error metrics to find optimal value of 
Each observation given equal importance

 

3. Weighted Moving Average  

Each observation given a weight 
Eg: Most recent observation given most weightage

 



4. Single Exponential Smoothing  

 is smoothing constant

No trend, no seasonal

Weigh the most recent forecast  and most recent observed value 

Influence of 

Pros  

Uses all historic data unlike SMA
Assigns progressively decreasing weights to older data

Cons  

Increasing n makes forecast less sensitive to changes
Lags behind trend
Larger n, larger lag
Forecase bias and systematic error when strong trend/seasonality

 



5. Double Explonential Smoothing (Holt's Two Parameter ES)  

Builds trend into model

Adds growth factor

Level (intercept) equation

Trend equation

The forecast for time  is

The forecast for time 

 



6. Triple Explonential Smoothing (Holt Winter's Method)  

 is the duration/length of seasonality

 

6.1 Multiplicative  

Level (intercept) equation

Trend equation

Seasonal equation

Forecast 

Initialisations for HW Method

Example of annual seasonal index (12 months)

 

Example



 

6.2 Additive  

Level (intercept) equation

Trend equation

Seasonal equation

Forecast 

Initial values

 

Predicting Seasonality Index Using Method of Averages  



 

Steps

Parameter tuning for ,  and 

 

 



7. Croston's Forecasting Method for Intermittent Demand  

Intermittent demand: spare parts, diyas, Christmas trees

Exponential smoothing will produce bias

Two components

Predicting time between demands
Magnitude of demand

Forecast: mean demand per period

Symbols

 = demand at time t (maybe 0)
 = forecasted demand (predicted)

 = time between latest and previous non-zero demand in period t
 = forecased time between demand in period t

Steps:

If  then  and  
If  then  and  

Mean demand per period 

 

Question  

Quarterly demand for spare parts of avionics system of an aircraft
Use demand during Q1 to Q4 to forecast for quarters 5 to 16 using Croston's method

Zero demand: 3, 6, 9, 11, 12, 15



Question  



 

In R  

 

tsinterminent  package R

 

Case studies - Power of seasonality index  
 



1. Forecasting study 1  

Following are the weekly attainment figures: Week 1: 75% Week 2: 77% Week 3: 79%

Week 4: 81%. 

What was amiss? What is the real-life forecasting story?

 

 

SI: Normalised
Divide each number by their yearly average to calculate the index

2. Forecasting study 2  

 



 

Conclusions

High proportion of marketing on black friday
Reallocate the spends from July Black Friday day to President's week, for higher ROI

 

Regression for Forecasting  
Forecast at time t

Example

Two factors not entirely independent

Need high  for forecasting (this is high enough)

If DW = 2, no autocorrelation exists

D = 1.608 => no autocorrelation between errors

Autocorrelation leads to inclusion of nonsignificant variables in the equation 

Standard error of regression coefficient is underestimated



 

If competition spends more, sales reduce

Comparing methods 

For given example, regression performs better

 

Forecasting with Regression - Seasonality  

Steps:

1. Estimate the seasonality index (using method of averages or ratio to moving average)
2. De-seasonalise the data using additive or multiplicative model (eg: de-seasonalised data in 

multiplicative:   where  is the seasonality index for period )

3. Develop a forecasting model on de-seasonalised data 
4. The forecast for period  is  (re-seasonalise)

 

Autoregressive Models  
Regression of variable on itself (AR)

Assumption: time-series is assumed to be a stationary process

If TS data not stationary, must be converted to stationary before applying AR models
Assumption: errors follow white noise (normal distribution: )



Conditions for Stationary Time-Series data  

1. Means of  at different values of  are constant
2. Variances of  at different time periods are constant (homoscedasticity)
3. Covariance of  and  for different lags depend only on  and not on time  (only the interval and 

not the time)

 

Concept of Stationarity  

Strictly stationary: distribution of values remains same as time proceeds

Weakly stationary: 

1. Constant mean: 
2. Constant variance: 
3. Constant auto covariance structure: 

Point 3: covariance between  and  being the same as  and 

Graph 2 has an upward trend

If variables in OLS are not stationary, high  and low  statistic indicate high autocorrelation

Caused by drift in variables
Determine if signal is stationary

Plotting
Assesing autocorrelation function 
Use DF, ADF tests on significance of autocorrelation coefficients

 

Example: which of the following are stationary?  

Source: https://otexts.com/fpp2/stationarity.html

https://otexts.com/fpp2/stationarity.html


 

(a) Google stock price for 200 consecutive days

Upward trend

(b) Daily change in the Google stock price for 200 consecutive days

Stationary (first order differenced)

(c) Annual number of strikes in the US

Seasonality and trend

(d) Monthly sales of new one-family houses sold in the US

Seasonality

(e) Annual price of a dozen eggs in the US (constant dollars)

Downward trend

(f) Monthly total of pigs slaughtered in Victoria, Australia

Seasonality, trends, levels

(g) Annual total of lynx trapped in the McKenzie River district of north-west Canada



Non-stationary upon first glance
Cycles are aperiodic — they are caused when the lynx population becomes too large for the available 
feed, so that they stop breeding and the population falls to low numbers, then the regeneration of 
their food sources allows the population to grow again, and so on
In the long-term, the timing of these cycles is not predictable
Hence the series is stationary

(h) Monthly Australian beer production

Trend, seasonality 

(i) Monthly Australian electricity production

Trend, seasonality

 

ACF and PACF  
ACF: autocorrelation function 
PACF: partial autocorrelation function 

 

ACF at lag k  

Stationary TS: ACF function of lag and not time

ACF between -1 and 1











Correlogram  

ACF against k - sample correlogram

Determine stationarity: if ACF falls immediately from 1 to 0 and then equals about 0 thereafter, series 
is stationary
If ACF declines gradually from 1 to 0 over a long period of time, it is not stationary
Plot shown above: stationary

 

Statistical Significance of ACF  

Q-statistic: if sample ACFs are jointly equal to 0

: sample size
: lag length

If jointly equal to 0, TS is stationary

Null hypothesis: sample ACFs jointly equal 0

Follows : m degrees of freedom

 

PACF  

Partial Autocorrelation Function

Correlations between observations k time periods apart after controlling for correlations at 
intermediate lags

First order (k=1) ACF and PACF are same

Second order (k=2) PACF



Partial correlogram (Box-Jenkins methodology)

 

AR, MA and ARMA Model  
 

1. AR (Autoregression)  

Assumption: stationary

Model: (no level or trend  )

If level/mean present

Expanding 

Expanding fully

Practical purposes:  

The second part of the equation can also become infinitely large if the errors do not follow a white 
noise

 

Estimating  

Take derivative and equate to 0, solve for 

 

AR Model Identification  

ACF:  

 : autocorrelation coefficient for order k



Null hypothesis rejected when 

 

PACF: partial autocorrelation of order k  

Null hypothesis rejected when 

 

Order of AR(p)  

ACF: spikes decay towards zero, coefficients may oscillate
PACF: spikes decay to zero after lag p

 

Example  

Build an auto-regressive model based on the first 30 days of data and forecast the demand for continental 
breakfast on days 31 to 37. Comment on the accuracy of the forecast.

 

 

Finding p using ACF and PACF plots (first 30 observations)



Critical values: horizontal lines
Reject null hypothesis where vertical bar beyond critical values
ACF: spikes decay towards zero, coefficients may oscillate
PACF: spikes decay to zero after lag p
PACF hits lag 0 at 2  p = 1

 model is 

 

Results of AR(1)  

 

 

Left: using actual value , right: using forecasted value  (here, k = 1)



 

Example of AR Model

 

2. MA (Moving Average)  

 

Dependent model regressed against lagged values of past terms or error terms

MA(q)

Modelling the errors and not the terms themselves

MA(q) given by



 

Order of MA(q)

ACF: spikes decay to zero after lag of q
PACF: spikes decay towards zero, coefficients may oscillate

 

Example of MA Model

 

3. AR(p) and MA(q) - ARMA(p,q)  

 

Stationary time series - ACF and correlogram, Q-statistic
AR(p): p lags of the dependent variable 
MA(q): q lags of the error term
ARMA(p, q): autoregressive, moving average



 

Summary of Parameter Selections for AR, MA and ARMA  

 

 

 

Summary of AR, MA and ARMA Models  



Example of ARMA  

1. Plot ACF and PACF (use confidence limits)



2. Forecast ARMA (1, 2)

3. Compute MAPE, RMSE



 

Concept of Stationarity, DF, ADF  
 

1. Identifying Stationarity using ACF  

Slow decline and no cut-off to 0  non-stationarity



 

2. Quantitative Test - Dickey-Fuller (DF) Test  

AR(1) defined as

If , AR(1) process can become very large

If , non-stationary

DF test is hypothesis test

 (time-series is non-stationary)
 (time series is stationary)

AR(1) written as

DF test in terms of 

 (time-series is non-stationary)
 (time series is stationary)

DF test statistic = 

 is the standard error of 

 

3. Augmented DF (ADF) Test  

DF test only valid if residual  follows a white noise

When  is not white noise, actual series may not be AR(1)

May have more significant lags
Solution: augment p-lags of the dependent variable 

Augmented DF test hypotheses

 (time-series is non-stationary)
 (time series is stationary)

 

Differencing - Transforming Non-Stationary Signal to
Stationary

 

Order of differencing  to convert a non-stationary signal to a stationary signal

Left and right difference (usually left difference)

Due to trend

De-trending: fit a trend line and subtract it from the time-series



Otherwise

Differencing TS process into difference stationary

1. First Difference  

Difference between consecutive values of the TS

2. Second Difference  

Difference of first differences

 

Differencing Example  

Source: https://otexts.com/fpp2/stationarity.html

The ACF of the Google stock price (left) and of the daily changes in Google stock price (right)
The ACF of the differenced Google stock price looks just like that of a white noise series
No autocorrelations outside 95% confidence interval

https://otexts.com/fpp2/stationarity.html


 

Random Walk Model  
Differenced series 

First order differenced has only  values (from second observation)

If differenced series is white noise, model for original series

Rearranging: random walk model

Used for non-stationary data (financial, economic)

Random walks

Long periods of apparent trends
Sudden unpredictable changes in direction

Forecast of RW model: previous observation

Future movements unpredictable

Used as a benchmark to compare other models' performance

 

Random Walk Model with Non-Zero Mean  
Mean 

 

 

Value of  is average of changes between consecutive observations



If , average change is an increase in the value of 

 tends to drift upwards
Else, drifts downwards

 

ARIMA Model  
Auto Regressive Integrated Moving Average Model

Integrated ( ) series: series which needs to be differenced to be made stationary
Lags of the stationarised series are called AR terms
Lags of the forecast errors are called MA terms

 

Step 1: Model Identification  

Identify right values of p, d, q

 

Step 2: Parameter Estimation and Model Selection  

Estimation of coefficients in AR and MA using OLS

Criteria: RMSE, MAPE, Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC)

AIC, BIC: measures of distances from actual values to forecasted values

 where 

 is the log likelihood function
 is number of parameters (orders) estimated 

 is number of observations



Higher penalty than AIC for every additional variable added to model
Low values of AIC, BIC preferred

 

Step 3: Model Validation  

Satisfy all regression conditions
Goodness of fit test: Ljung-Box test

 

ARIMA Filtering Box  

Think of p, d and q as knobs
Adjust knobs until residuals are white noise

ARIMA Models  

1.  = constant model

2.  = random walk model

3.  = random walk with drift

4.  = regress  on  

5.  = regress  on 

6.  = regress  on  and 

7.  = SES model



8.  = SES model with constant linear trend

9.  = LES with damped trend

10.  = generalised LES

Usually, 
If differenced, it must be un-differenced

 

Rules of Thumb  

If stationarised series has positive autocorrelation at lag 1, AR terms oftern work best

Compensate for the lack of nonseasonal difference
If stationarised series has negative autocorrelation at lag 1, MA terms oftern work best

Fine-tune the effect of nonseasonal difference
Look at 05.1 slides

 

SARIMA Model  
Seasonal ARIMA

Seasonality

: number of seasonal autoregressive terms
: number of seasonal differences
: number of seasonal moving average terms

Complete model: 

Filtering box (tune like knobs)



 

Seasonal Differences  

Combine non-seasonal and seasonal differences

 



SAR and SMA terms  

Setting  (SAR) adds multiple of  to the forecast for 
Setting  (SMA) adds a multiple of  to the forecast for 
SAR + SMA should never exceed 1

 

Ljung-Box Test for Autocorrelations  
Checks if auto-correlations are non-zero

Null and alt hypotheses

: model does not show lack of fit (model is a good fit)
: model shows lack of fit

Test statistic: -statistic

m is total number of lags
n is number of observations
k is number of lags

 is the autocorrelation of lag k
Q-statistic is chi-square distribution with m-p-q degrees of freedom

 

Thiel's Coefficient  
Comparision of forecasting model to naive forecast



U-statistic

Ratio of SSE of forecasting to SSE of naive model
If U < 1, forecasting doing better than naive
If U > 1, forecasting doing worse than naive

 

The X Factor (ARX, ARIMAX)  
X: exogenous variables
Other factors that influence the forecast (domain knowledge)
How to integrate it into the model?

 

Spectral Analysis of TS Data  
 

Discrete Fourier Transform of the Time Series  

Function of time to function of frequencies

Discrete FT of time series 

Periodogram: 

Cosine and sine components, re and im components
If no periodic trend in data,  and periodogram expresses variance of  at 
frequency 



If periodic trend exists,   is the contribution to the preiodic trend at the frequency 
Eg: The series is n = 128 values of brain cortex activity, measured every 2 seconds for 256 seconds. A 
stimulus, brushing of the back of the hand, was applied for 32 seconds and then was stopped for 32 
seconds. This pattern was repeated for a total of 256 seconds. The series is actually the average of this 
process for five different subjects.

 

Wavelet Transformation  

Finite portion of a signal
Similar to FT
Read slides for more

 



More  

DL
Classifier chains
MDP, RL
Read slides
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