# **Unit 3 - Time Series Analysis**

Class notes: Vibha Masti

Feedback/corrections: vibha@pesu.pes.edu

## **Table of Contents**

#### **Unit 3 - Time Series Analysis**

Table of Contents

Additive & Multiplicative Time Series

Components

- 1. Trend Component
- 2. Seasonal Components
- 3. Cyclical Components
- 4. Irregular Components

Additive vs Multiplicative

- Decomposition of TS Model
  - 1. Additive decomposition
  - 2. Multiplicative decomposition
  - 3. Pseudo-Additive decomposition

Extraction of Time Series Components

- **Error Metrics** 
  - 1. Mean absolute error (MAE)
  - 2. Mean absolute percentage error (MAPE)
  - 3. Mean squared error (MSE)
  - 4. Root mean square error (RMSE)

#### **Forecasing Methods**

- 1. Total Mean
- 2. Simple Moving Average (SMA)
- 3. Weighted Moving Average
- 4. Single Exponential Smoothing
  - Pros
  - Cons
- 5. Double Explonential Smoothing (Holt's Two Parameter ES)
- 6. Triple Explonential Smoothing (Holt Winter's Method)
  - 6.1 Multiplicative
  - 6.2 Additive
  - Predicting Seasonality Index Using Method of Averages
- 7. Croston's Forecasting Method for Intermittent Demand
  - Question
  - Question
  - In R

Case studies - Power of seasonality index

- 1. Forecasting study 1
- 2. Forecasting study 2
- **Regression for Forecasting**

Forecasting with Regression - Seasonality

**Autoregressive Models** Conditions for Stationary Time-Series data  $Y_t$ **Concept of Stationarity** Example: which of the following are stationary? ACF and PACF ACF at lag k Correlogram Statistical Significance of ACF PACF AR, MA and ARMA Model 1. AR (Autoregression) Estimating  $\beta$ AR Model Identification ACF: PACF: partial autocorrelation of order k Order of AR(p) Example Results of AR(1) 2. MA (Moving Average) 3. AR(p) and MA(q) - ARMA(p,q) Summary of Parameter Selections for AR, MA and ARMA Summary of AR, MA and ARMA Models **Example of ARMA** Concept of Stationarity, DF, ADF 1. Identifying Stationarity using ACF 2. Quantitative Test - Dickey-Fuller (DF) Test 3. Augmented DF (ADF) Test Differencing - Transforming Non-Stationary Signal to Stationary 1. First Difference 2. Second Difference **Differencing Example** Random Walk Model Random Walk Model with Non-Zero Mean **ARIMA Model** Step 1: Model Identification Step 2: Parameter Estimation and Model Selection Step 3: Model Validation **ARIMA Filtering Box ARIMA Models** Rules of Thumb SARIMA Model Seasonal Differences SAR and SMA terms Ljung-Box Test for Autocorrelations Thiel's Coefficient The X Factor (ARX, ARIMAX) Spectral Analysis of TS Data Discrete Fourier Transform of the Time Series Wavelet Transformation

```
More
```

# **Additive & Multiplicative Time Series**

- Composed of trend (overall trend), seasonal (repeat seasonally eg Diwali season), cyclic (similar to seasonal but slower-moving 10-20 years, recession) and irregulars (random)
- Additive:  $Y_t = T_t + S_t + C_t + I_t$
- Multiplicative:  $Y_t = T_t imes S_t imes C_t imes I_t$



## Components

#### 1. Trend Component

• Consistent long-term upward/downward movement of data









#### 2. Seasonal Components

- Repetitive upward/downward fluctuations from the trend
- Within calendar year
- Festivals, seasons, customs, business practices, market
- India: Oct-Dec demand
- Conditions
  - Natural (weather)
  - Business and administrative procedures (school term)
  - Social/cultural (festivals)
  - Trading day effects (number of weekends in a month)
  - Moving holiday effects (Ramadan, Diwali, Easter)
- Identify seasonal components: regularly spaced peaks and troughs



• Notice trend and seasonality



Obvious large seasonal increase in December retail sales in New South Wales due to Christmas shopping

#### **3. Cyclical Components**

- Fluctuations due to macroeconomic changes
- Recession, unemployment

#### 4. Irregular Components

- White noise/random noise
- Uncorrelated changes
- Normal distribution with mean value of 0 and constant variance
- After seasonal and trend components have been estimated and removed
- Short term fluctuations in series (not systematic or predictable)



## Additive vs Multiplicative

- Multiplicative more often used, better fit
  - $\circ \ \ Y_t = T_t \times S_t \ \text{used}$
  - Cyclic estimation large dataset required
  - Appropriate if seasonal correlated with level/local mean



The trend has the same units as the original series, but the seasonal and irregular components are unitless factors, distributed around 1

- Additive only appropriate if
  - Seasonal and cyclical independent of trend
  - Seasonal remains constant about level/mean



The underlying level of the series fluctuates but the magnitude of the seasonal spikes remain approximately stable

## **Decomposition of TS Model**

#### 1. Additive decomposition

- When amplitude of seasonal and irregular do not change with level
- Observed time series  $O_t$

$$\circ \ O_t = T_t + S_t + I_t$$

- Seasonally adjusted series  $SA_t$ 
  - Observed approximation for Seasonal  $\hat{S}_t$
  - $\circ \ SA_t = O_t \hat{S}_t$
  - $\circ \ SA_t = T_t + I_t$

#### 2. Multiplicative decomposition

- Amplitude of seasonal and irregular increase as the level of the trend rises
- Observed time series  $O_t$

 $\circ \ O_t = T_t \times S_t \times I_t$ 

- Seasonally adjusted series
- $SA_t$ 
  - Observed  $\div$  approximation for Seasonal  $\hat{S}_t$

• 
$$SA_t = \frac{O_t}{\hat{S}_t}$$

$$\circ ~~SA_t = ilde{T_t} imes I_t$$

#### 3. Pseudo-Additive decomposition

- Multiplicative model not used when data contains small or zero values
  - Cannot divide by 0
- Pseudo-additive combines additive and multiplicative
- Assumption: seasional and irregular independent of each other but dependent on trend
  - $O_t = T_t + T_t \times (S_t 1) + T_t \times (I_t 1)$
  - $\circ \ O_t = T_t \times (S_t + I_t 1)$
  - $\circ~$  Both  $S_t$  and  $I_t$  centered around 1
  - Subtract 1 from both to center around 0
- Example that requires pseudo-additive

#### Quarterly Gross Value for the Production of Cereal Crops



This model is used as cereal crops are only produced during certain months, with crop production being virtually zero for one quarter each year.

## **Extraction of Time Series Components**

#### **Error Metrics**

- $Y_t$  is actual value
- $F_t$  is forecasted value

#### 1. Mean absolute error (MAE)

• 
$$MAE = \frac{1}{n} \sum_{t=1}^{n} |Y_t - F_t|$$

#### 2. Mean absolute percentage error (MAPE)

• 
$$MAPE = rac{1}{n} \sum_{t=1}^n (rac{|Y_t - F_t|}{Y_t} imes 100\%)$$

#### 3. Mean squared error (MSE)

• 
$$MSE = \frac{1}{n} \sum_{t=1}^{n} (Y_t - F_t)^2$$

- 4. Root mean square error (RMSE)
  - $RMSE = \sqrt{MSE}$

# **Forecasing Methods**

## 1. Total Mean

- Mean of total data
- Good when there is no overall trend
- Does not account for trend or seasonality

• 
$$F_{t+1} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$

## 2. Simple Moving Average (SMA)

- Mean of k most recent observations
- Moving average value  $F_{t+1}$

• 
$$F_{t+1} = \frac{1}{k} \sum_{i=t-k+1}^{t} Y_i$$

- Large k: Infrequient fluctuations in series
- To forecast  $F_{t+1}$
- Use error metrics to find optimal value of k
- Each observation given equal importance

## 3. Weighted Moving Average

- Each observation given a weight  $w_i$
- Eg: Most recent observation given most weightage

• 
$$F_{t+1} = rac{1}{k} \sum_{i=t-k+1}^t w_i imes Y_i$$

## 4. Single Exponential Smoothing

- $\alpha$  is smoothing constant
- No trend, no seasonal
- Weigh the most recent forecast  $F_t$  and most recent observed value  $y_t$

• 
$$F_{t+1} = \alpha Y_t + (1 - \alpha) F_t$$
  
 $F_{t+1} = \alpha Y_t + (1 - \alpha) (\alpha Y_{t-1} + (1 - \alpha) F_{t-1})$   
 $F_{t+1} = \alpha Y_t + \alpha (1 - \alpha) Y_{t-1} + (1 - \alpha)^2 F_{t-1}$ 

•••

$$F_{t+1} = \sum_{i=0}^{t-1} lpha \; (1-lpha)^i \; Y_{t-i}$$

• Influence of  $\alpha$ 



FIGURE 13.3 Exponential decay of weights to older observations.

#### Pros

- Uses all historic data unlike SMA
- Assigns progressively decreasing weights to older data

#### Cons

- Increasing n makes forecast less sensitive to changes
- Lags behind trend
- Larger n, larger lag
- Forecase bias and systematic error when strong trend/seasonality

## 5. Double Explonential Smoothing (Holt's Two Parameter ES)

- Builds trend into model
- Adds growth factor
- Level (intercept) equation

$$\circ \ \ L_t = \alpha \times Y_t + (1-\alpha) \times F_t$$

• Trend equation

• 
$$T_t = \beta \times (L_t - L_{t-1}) + (1 - \beta) \times T_{t-1}$$

• The forecast for time t+1 is

$$\circ \ F_{t+1} = L_t + T_t$$

• The forecast for time t + n

$$\circ \ F_{t+n} = L_t + n \ T_t$$





## 6. Triple Explonential Smoothing (Holt Winter's Method)

• *c* is the duration/length of seasonality

#### 6.1 Multiplicative

• Level (intercept) equation

• 
$$L_t = \alpha \; \frac{Y_t}{S_{t-c}} + (1-\alpha) \; [L_{t-1} + T_{t-1}]$$

• Trend equation

• 
$$T_t = \beta \times (L_t - L_{t-1}) + (1 - \beta) \times T_{t-1}$$

• Seasonal equation

$$\circ ~~ S_t = \gamma rac{Y_t}{L_t} + (1-\gamma) ~S_{t-c}$$

• Forecast  $F_{t+1}$ 

• 
$$F_{t+1} = [L_t + T_t] imes S_{t+1-c}$$

- Initialisations for HW Method
  - Example of annual seasonal index (12 months)

$$\begin{array}{l} \circ \ \ L_t = Y_t \\ \circ \ \ L_t = \frac{1}{c} \ (Y_1 + Y_2 + \ \dots \ + Y_c) \\ \circ \ \ T_t = \frac{1}{c} \ [\frac{Y_t - Y_{t-c}}{12} + \frac{Y_{t-1} - Y_{t-c-1}}{12} + \frac{Y_{t-2} - Y_{t-c-2}}{12} + \dots + \frac{Y_{t-c+1} - Y_{t-2c+1}}{12}] \end{array}$$

• Example

Quarterly Saw Sales Forecas: Winter's Method

# $\alpha = 0.4, \beta = 0.1, \gamma = 0.3$ and RMSE = 83.36



#### 6.2 Additive

• Level (intercept) equation

• 
$$L_t = \alpha (Y_t - S_{t-c}) + (1 - \alpha) (L_{t-1} + T_{t-1})$$

• Trend equation

• 
$$T_t = \beta \times (L_t - L_{t-1}) + (1 - \beta) \times T_{t-1}$$

• Seasonal equation

$$\circ ~~S_t = \gamma \left(Y_t - L_t
ight) + \left(1 - \gamma
ight) S_{t-c}$$

• Forecast  $F_{t+m}$ 

• 
$$F_{t+m} = L + m T_{t-1} + S_{t+m-c}$$

• Initial values

$$\begin{array}{l} \circ \quad L_t = Y_t \\ \circ \quad T_t = \frac{1}{c} \left[ \frac{Y_t - Y_{t-c}}{12} + \frac{Y_{t-1} - Y_{t-c-1}}{12} + \frac{Y_{t-2} - Y_{t-c-2}}{12} + \ldots + \frac{Y_{t-c+1} - Y_{t-2c+1}}{12} \right] \\ \circ \quad S_1 = Y_1 - L_c \\ \circ \quad S_2 = Y_2 - L_c \\ \circ \quad S_c = Y_c - L_c \end{array}$$

## Predicting Seasonality Index Using Method of Averages

The seasonality index based on first 3 years of data using method of averages is shown in Table 1.

| Month             | Sale Quantity<br>(2012) | Sale Quantity<br>(2013) | Sale Quantity<br>(2014) | Monthly Average $\overline{Y}_{\kappa}$ | Seasonality Index $\overline{Y}_{\!_k}/\overline{\overline{Y}}$ |
|-------------------|-------------------------|-------------------------|-------------------------|-----------------------------------------|-----------------------------------------------------------------|
| January           | 3002666                 | 4447581                 | 4634047                 | 4028098.00                              | 1.087932                                                        |
| February          | 4401553                 | 3675305                 | 3772879                 | 3949912.33                              | 1.066815                                                        |
| March             | 3205279                 | 3477156                 | 3187110                 | 3289848.33                              | 0.888541                                                        |
| April             | 4245349                 | 3720794                 | 3093683                 | 3686608.67                              | 0.9957                                                          |
| May               | 3001940                 | 3834086                 | 4557363                 | 3797796.33                              | 1.02573                                                         |
| June              | 4377766                 | 3888913                 | 3816956                 | 4027878.33                              | 1.087872                                                        |
| July              | 2798343                 | 3871342                 | 4410887                 | 3693524.00                              | 0.997568                                                        |
| August            | 4303668                 | 3679862                 | 3694713                 | 3892747.67                              | 1.051375                                                        |
| September         | 2958185                 | 3358242                 | 3822669                 | 3379698.67                              | 0.912808                                                        |
| October           | 3623386                 | 3361486                 | 3689286                 | 3558053.33                              | 0.960979                                                        |
| November          | 3279115                 | 3670362                 | 3728654                 | 3559377.00                              | 0.961337                                                        |
| December          | 2843766                 | 3123966                 | 4732677                 | 3566803.00                              | 0.963342                                                        |
| Average of monthl | y averages              |                         |                         | 3702528.22                              |                                                                 |

Seasonality index can be interpreted as percentage change from the trend line.

For example, the seasonality index for January is approximately 1.088 or 108.8%.

This implies that in January, the demand will be approximately 8.8% more from the trend line.

The seasonality index for March is 0.8885 or 88.85%.

- Steps
  - STEP 1
  - Calculate the average of value of Y for each season that is, if the data is monthly data, then we need to calculate the average for each month based on the training data.
  - Let these averages be  $\bar{Y}_{1}$ ,  $\bar{Y}_{2}$ ,  $\bar{Y}_{3}$ ......  $\bar{Y}_{c}$
  - STEP 2
  - Calculate the average of the seasons' averages calculated in step 1 (say  $\bar{\breve{Y}}$  ).
  - STEP 3
  - The seasonality index for season k is given by the ratio  $\bar{Y}_k / \bar{\bar{Y}}$ .
  - to the procedure explained above is first divide the value of Y<sub>t</sub> with its yearly average and calculate the seasonal average
  - We will use first 3 years of data to calculate the seasonality index for various months.
- Parameter tuning for lpha, eta and  $\gamma$

## 7. Croston's Forecasting Method for Intermittent Demand

- Intermittent demand: spare parts, diyas, Christmas trees
- Exponential smoothing will produce bias
- Two components
  - Predicting time between demands
  - Magnitude of demand
- Forecast: mean demand per period
- Symbols
  - $Y_t$  = demand at time t (maybe 0)
  - $F_t$  = forecasted demand (predicted)
  - $TD_t$  = time between latest and previous non-zero demand in period t
  - $FTD_t$  = forecased time between demand in period t
- Steps:
  - If  $Y_t = 0$  then  $F_{t+1} = F_t$  and  $FTD_{t+1} = FTD_t$
  - $\circ$  If  $Y_t 
    eq 0$  then  $F_{t+1} = lpha \; Y_t + (1-lpha) \; F_t$  and  $FTD_{t+1} = eta \; TD_t + (1-eta) \; FTD_t$
- Mean demand per period  $D_{t+1}$

• 
$$D_{t+1} = \frac{F_{t+1}}{FTD_{t+1}}$$

#### Question

- Quarterly demand for spare parts of avionics system of an aircraft
- Use demand during Q1 to Q4 to forecast for quarters 5 to 16 using Croston's method

| Quarter | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|---------|----|----|----|----|----|----|----|----|
| Demand  | 20 | 12 | 0  | 18 | 16 | 0  | 20 | 22 |
| Quarter | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| Demand  | 0  | 28 | 0  | 0  | 30 | 26 | 0  | 34 |

TABLE 13.8 Quarterly demand for avionic system spares

• Zero demand: 3, 6, 9, 11, 12, 15

- Procedure used for starting values of *F<sub>t</sub>* and *FTD<sub>t</sub>* is shown in the table here:
- $TD_4 = 2$  since the elapsed time from the previous demand and current demand period is 2 (4 2).
- The forecasted time between demand is the average *TD<sub>t</sub>* values up to *t* = 4.
- So, *FTD*<sub>4</sub> = (1+2)/2 = 1.5.
- The forecasted demand  $F_4$  for t = 4 is (20 + 12 + 18)/3 = 16.67.
- Note that the total value is divided by 3 (not 4) since only 3 quarters had non-zero demand.
- So, the starting values for Croston's method are.

Forecasted demand for periods 5 to 16 using Croston's method.

| Quarter | Demand | TD, | FTD,   | F,       | $D_t = (F_t / FTD_t)$ |
|---------|--------|-----|--------|----------|-----------------------|
| 1       | 20     |     |        |          |                       |
| 2       | 12     | 1   |        |          |                       |
| 3       | 0      |     |        |          |                       |
| 4       | 18     | 2   | 1.5000 | 16.67    | 11.11333              |
| 5       | 16     | 1   | 1.6000 | 16.936   | 10.585                |
| 6       | 0      |     | 1.4800 | 16.7488  | 11.31676              |
| 7       | 20     | 2   | 1.4800 | 16.7488  | 11.31676              |
| 8       | 22     | 1   | 1.5840 | 17.39904 | 10.98424              |
| 9       | 0      |     | 1.4672 | 18.31923 | 12.48585              |
| 10      | 28     | 2   | 1.4672 | 18.31923 | 12.48585              |
| 11      | 0      |     | 1.5738 | 20.25539 | 12.8707               |
| 12      | 0      |     | 1.5738 | 20.25539 | 12.8707               |
| 13      | 30     | 3   | 1.5738 | 20.25539 | 12.8707               |
| 14      | 26     | 1   | 1.8590 | 22.20431 | 11.94417              |
| 15      | 0      |     | 1.6872 | 22.96345 | 13.61034              |
| 16      | 34     | 2   | 1.6872 | 22.96345 | 13.61034              |

#### Question

| Quarter | Demand | TD, | FTD, | F,    |
|---------|--------|-----|------|-------|
| 1       | 20     |     |      |       |
| 2       | 12     | 1   |      |       |
| 3       | 0      |     |      |       |
| 4       | 18     | 2   | 1.5  | 16.67 |

| $TD_4 = 2$ , $FTD_4 = 1.5$ , and $F_4 = 16.67$        |
|-------------------------------------------------------|
| Let $\alpha = \beta = 0.2$ . Then                     |
| $F_5 = 0.2 \times 18 + (1 - 0.2) * 16.67 = 16.936$    |
| $FTD_{e} = 0.2 \times 2 + (1 - 0.2) \times 1.5 = 1.6$ |

#### Example: lubricant sales

- · Several years ago, an oil company requested forecasts of monthly lubricant sales
- One of the time series is shown in the table below.
- The data contain small counts, with many months registering no sales at all, and only small numbers of items sold in other months.

| Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1    | 0   | 2   | 0   | 1   | 0   | 11  | 0   | 0   | 0   | 0   | 2   | 0   |
| 2    | 6   | 3   | 0   | 0   | 0   | 0   | 0   | 7   | 0   | 0   | 0   | 0   |
| 3    | 0   | 0   | 0   | 3   | 1   | 0   | 0   | 1   | 0   | 1   | 0   | 0   |

- There are 11 non-zero demand values in the series, denoted by q.
- The corresponding arrival series a is also shown in the following table.

| i | 1 | 2 | 3  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|---|---|---|----|---|---|---|---|---|---|----|----|
| q | 2 | 1 | 11 | 2 | 6 | 3 | 7 | 3 | 1 | 1  | 1  |
| a | 2 | 2 | 2  | 5 | 2 | 1 | 6 | 8 | 1 | 3  | 2  |

- Applying Croston's method gives the demand forecast 2.750 and the arrival forecast 2.793.
- So the forecast of the original series is  $\ \hat{y}_{T+h|T} = 2.750/2.793 = 0.985$

#### In R



• tsinterminent package R

## **Case studies - Power of seasonality index**

## 1. Forecasting study 1

- Following are the weekly attainment figures: Week 1: 75% Week 2: 77% Week 3: 79% Week 4: 81%.
- What was amiss? What is the real-life forecasting story?

| •                                                 |      |      |      |      |  |  |  |  |
|---------------------------------------------------|------|------|------|------|--|--|--|--|
| April Forecast and Actuals Comparison             |      |      |      |      |  |  |  |  |
| FY19 Forecast FY19 Actuals FY18 Actuals FY17 Actu |      |      |      |      |  |  |  |  |
| April Average(Mn)                                 | 16.5 | 14.3 | 15.5 | 15.6 |  |  |  |  |
| Year Average(Mn)                                  | 18.6 | 18.4 | 19.1 | 19.5 |  |  |  |  |
| April Seasonality                                 | 89%  | 78%  | 81%  | 80%  |  |  |  |  |

#### CASE 1 : Forecast over-indexed in April

- Here is what happened: As we can see from the image,
- April forecast seasonality was over indexed by 11%, i.e. at 89% of yearly average while actuals were trending towards 78%.
- What does a seasonality index mean?

| Seasonality Index Calculation |               |              |              |              |  |  |  |  |
|-------------------------------|---------------|--------------|--------------|--------------|--|--|--|--|
|                               | FY19 Forecast | FY19 Actuals | FY18 Actuals | FY17 Actuals |  |  |  |  |
| Week 1(Mn)                    | 18.2          | 17.1         | 18.5         | 17.9         |  |  |  |  |
| Week 2(Mn)                    | 18.4          | 17.0         | 17.6         | 18.7         |  |  |  |  |
| Week 3(Mn)                    | 19.6          | 16.5         | 17.5         | 18.6         |  |  |  |  |
| Year Average(Mn)              | 18.6          | 18.4         | 19.1         | 19.5         |  |  |  |  |
|                               | 4             | 4            | 4            | 4            |  |  |  |  |
| Week 1                        | 98%           | 93%          | 97%          | 92%          |  |  |  |  |
| Week 2                        | 99%           | =F73/F\$75   | 92%          | 96%          |  |  |  |  |
| Week 3                        | 105%          | 90%          | 91%          | 95%          |  |  |  |  |

- SI: Normalised
- Divide each number by their yearly average to calculate the index

## 2. Forecasting study 2



- Conclusions
  - High proportion of marketing on black friday
  - Reallocate the spends from July Black Friday day to President's week, for higher ROI

# **Regression for Forecasting**

• Forecast at time t

$$\circ \ F_t = \beta_0 + \beta_1 \ X_{1t} + \beta_2 \ X_{2t} + \ \dots \ + \beta_n \ X_{nt}$$

- Example
  - $\circ \ \ F_t = \beta_0 + \beta_1 \times (promotion\_expenses_t) + \beta_2 \times (competition\_promotion_t)$
  - 0

| Model | R     | <b>R</b> -Square | Adjusted <i>R</i> -Square | Std. Error of the Estimate | Durbin—Watson |
|-------|-------|------------------|---------------------------|----------------------------|---------------|
| 1     | 0.928 | 0.862            | 0.853                     | 207017.359                 | 1.608         |

- Two factors not entirely independent
- Need high  $R^2$  for forecasting (this is high enough)
- If DW = 2, no autocorrelation exists
- D = 1.608 => no autocorrelation between errors
- Autocorrelation leads to inclusion of nonsignificant variables in the equation
- Standard error of regression coefficient is underestimated

| Model |                       | Unstandardized | l Coefficients | Standardized Coefficients | +      | Cia   |  |
|-------|-----------------------|----------------|----------------|---------------------------|--------|-------|--|
| model |                       | В              | Std. Error     | Beta                      | l      | siy.  |  |
|       | (Constant)            | 808471.843     | 278944.970     |                           | 2.898  | 0.007 |  |
| 1     | Promotion Expenses    | 22432.941      | 1953.674       | 0.825                     | 11.482 | 0.000 |  |
|       | Competition Promotion | -212646.036    | 77012.289      | -0.198                    | -2.761 | 0.009 |  |

#### **Events Recommended**

0

• If competition spends more, sales reduce

$$F_t = 808471.843 + 22432.941X_{1t} - 212646.036X_{2t}$$

 $X_{1t}$  = Promotion expenses at time t

- $X_{2t} = \begin{cases} 1 & \text{Competition is on promotion} \\ 0 & \text{Otherwise} \end{cases}$
- Sales increases when promotions expenses increase and the sales decrease when the competition is on the promotion.



#### **Comparing methods**

• For given example, regression performs better

| Method                | ΜΑΡΕ      | RMSE   |
|-----------------------|-----------|--------|
| Moving Average        | 734725.84 | 14.03% |
| Exponential Smoothing | 742339.22 | 13.94% |
| Regression            | 302969    | 4.19%  |

#### **Forecasting with Regression - Seasonality**

Steps:

- 1. Estimate the seasonality index (using method of averages or ratio to moving average)
- 2. De-seasonalise the data using  $\frac{\text{additive}}{V}$  or  $\frac{\text{multiplicative}}{V}$  model (eg: de-seasonalised data in
- multiplicative:  $Y_{d,t} = rac{Y_t}{S_t}\,$  where  $S_t$  is the seasonality index for period t)
- 3. Develop a forecasting model on de-seasonalised data  $F_{d,t}$
- 4. The forecast for period t+1 is  $F_{t+1}=F_{d,t+1} imes S_{t+1}$  (re-seasonalise)

## **Autoregressive Models**

- Regression of variable on itself (AR)
- Assumption: time-series is assumed to be a stationary process
  - If TS data not stationary, must be converted to stationary before applying AR models
- Assumption: errors follow white noise (normal distribution:  $\epsilon \sim N(0,~\sigma_{\epsilon}^2)$ )

## Conditions for Stationary Time-Series data $Y_t$

- 1. Means of  $Y_t$  at different values of t are constant
- 2. Variances of  $Y_t$  at different time periods are constant (homoscedasticity)
- 3. Covariance of  $Y_t$  and  $Y_{t-k}$  for different lags depend only on k and not on time t (only the interval and not the time)

## **Concept of Stationarity**

- Strictly stationary: distribution of values remains same as time proceeds
- Weakly stationary:
  - 1. Constant mean:  $E(y_t) = \mu$
  - 2. Constant variance:  $E(y_t \mu)^2 = \sigma^2$
  - 3. Constant auto covariance structure:  $E(y_{t1}-\mu)(y_{t2}-\mu)=\gamma_{t2-t1},orall t_1,t_2$
- Point 3: covariance between  $y_{t-1}$  and  $y_{t-2}$  being the same as  $y_{t-5}$  and  $y_{t-6}$







- Graph 2 has an upward trend
- If variables in OLS are not stationary, high  $R^2$  and low DW statistic indicate high autocorrelation
  - Caused by drift in variables
- Determine if signal is stationary
  - Plotting
  - Assesing autocorrelation function
  - Use DF, ADF tests on significance of autocorrelation coefficients

#### Example: which of the following are stationary?

• Source: https://otexts.com/fpp2/stationarity.html



#### (a) Google stock price for 200 consecutive days

• Upward trend

#### (b) Daily change in the Google stock price for 200 consecutive days

• Stationary (first order differenced)

#### (c) Annual number of strikes in the US

• Seasonality and trend

#### (d) Monthly sales of new one-family houses sold in the US

• Seasonality

#### (e) Annual price of a dozen eggs in the US (constant dollars)

• Downward trend

#### (f) Monthly total of pigs slaughtered in Victoria, Australia

• Seasonality, trends, levels

#### (g) Annual total of lynx trapped in the McKenzie River district of north-west Canada

- Non-stationary upon first glance
- Cycles are aperiodic they are caused when the lynx population becomes too large for the available feed, so that they stop breeding and the population falls to low numbers, then the regeneration of their food sources allows the population to grow again, and so on
- In the long-term, the timing of these cycles is not predictable
- Hence the series is **stationary**

#### (h) Monthly Australian beer production

• Trend, seasonality

#### (i) Monthly Australian electricity production

Trend, seasonality

# ACF and PACF

- ACF: autocorrelation function
- PACF: partial autocorrelation function

# ACF at lag k

- Stationary TS: ACF function of lag and not time  $\rho_k = \frac{\gamma_k}{\gamma_0} = \frac{covariance \ at \ lag \ k}{variance}$   $\rho_k = \frac{\sum\limits_{t=k+1}^{n} (Y_{t-k} \bar{Y})(Y_t \bar{Y})}{\sum\limits_{t=1}^{n} (Y_t \bar{Y})^2}$
- ACF between -1 and 1









## Correlogram

• ACF against k - sample correlogram



- Determine stationarity: if ACF falls immediately from 1 to 0 and then equals about 0 thereafter, series is stationary
- If ACF declines gradually from 1 to 0 over a long period of time, it is not stationary
- Plot shown above: stationary

#### **Statistical Significance of ACF**

• Q-statistic: if sample ACFs are jointly equal to 0

• 
$$Q=n\sum\limits_{k=1}^{m}{\hat{
ho_k}}^2$$

• *n*: sample size

- *m*: lag length
- If jointly equal to 0, TS is stationary
- Null hypothesis: sample ACFs jointly equal 0
- Follows  $\chi^2(m)$ : m degrees of freedom

## PACF

- Partial Autocorrelation Function
- Correlations between observations k time periods apart after controlling for correlations at intermediate lags
- First order (k=1) ACF and PACF are same
- Second order (k=2) PACF

$$\circ \; rac{cov(y_t, \, y_{t-2}|y_{t-1})}{\sqrt{var(y_t|y_{t-1}) \; var(y_{t-2}|y_{t-1})}}$$

• Partial correlogram (Box-Jenkins methodology)

# AR, MA and ARMA Model

## 1. AR (Autoregression)

- Assumption: stationary
- Model: (no level or trend  $\implies \beta_0 = 0$ )

•  $Y_{t+1} = \beta Y_t + \epsilon_{t+1}$ 

• If level/mean present

 $\circ \ Y_{t+1} - \mu = \beta \times (Y_t - \mu) + \epsilon_{t+1}$ 

• Expanding  $Y_t$ 

$$\circ \ Y_{t+1} - \mu = \beta \times (\beta \times (Y_{t-1} - \mu) + \epsilon_t) + \epsilon_{t+1}$$

- Expanding fully
  - $\begin{array}{l} \circ \quad Y_{t+1} \mu = \beta^t (Y_0 \mu) + \beta^{t-1} \epsilon_1 + \beta^{t-2} \epsilon_2 + \dots + \beta \epsilon_t + \epsilon_{t+1} \\ \circ \quad Y_{t+1} \mu = \beta^t (Y_0 \mu) + \sum_{k=1}^{t-1} \beta^{t-k} \times \epsilon_k + \epsilon_{t+1} \end{array}$
- Practical purposes:  $|\beta| < 1$
- The second part of the equation can also become infinitely large if the errors do not follow a white noise

#### Estimating $\beta$

• 
$$\sum_{t=2}^{n} \epsilon_t^2 = \sum_{t=2}^{n} [(Y_t - \mu) - \beta \times (Y_{t-1} - \mu)]^2$$

• Take derivative and equate to 0, solve for  $\beta$ 

• 
$$\hat{eta} = rac{\sum\limits_{t=2}^n (Y_t - \mu)(Y_{t-1} - \mu)}{\sum\limits_{t=2}^n (Y_{t-1} - \mu)^2}$$

#### **AR Model Identification**

ACF:

• 
$$\rho_k = \frac{\sum\limits_{t=k+1}^n (Y_{t-k} - \bar{Y})(Y_t - \bar{Y})}{\sum\limits_{t=1}^n (Y_t - \bar{Y})^2}$$
: autocorrelation coefficient for order k  
•  $H_0: \rho_k = 0$   
•  $H_a: \rho_k \neq 0$ 

• Null hypothesis rejected when  $|
ho_k| > rac{1.96}{\sqrt{n}}$ 

#### PACF: partial autocorrelation of order k

- $H_0:
  ho_{pk}=0$
- $H_a: \rho_{pk} 
  eq 0$
- Null hypothesis rejected when  $|
  ho_{pk}| > rac{1.96}{\sqrt{n}}$

#### Order of AR(p)

- ACF: spikes decay towards zero, coefficients may oscillate
- PACF: spikes decay to zero after lag p

#### **Example**

Build an auto-regressive model based on the first 30 days of data and forecast the demand for continental breakfast on days 31 to 37. Comment on the accuracy of the forecast.

| Day | Demand CB | Day | Demand CB |
|-----|-----------|-----|-----------|
| 1   | 25        | 20  | 43        |
| 2   | 25        | 21  | 41        |
| 3   | 25        | 22  | 46        |
| 4   | 35        | 23  | 41        |
| 5   | 41        | 24  | 40        |
| 6   | 30        | 25  | 32        |
| 7   | 40        | 26  | 41        |
| 8   | 40        | 27  | 41        |
| 9   | 40        | 28  | 40        |
| 10  | 40        | 29  | 43        |
| 11  | 40        | 30  | 46        |
| 12  | 40        | 31  | 45        |
| 13  | 44        | 32  | 45        |
| 14  | 49        | 33  | 46        |
| 15  | 50        | 34  | 43        |
| 16  | 45        | 35  | 40        |
| 17  | 40        | 36  | 41        |
| 18  | 42        | 37  | 41        |
| 19  | 40        |     |           |

• Finding p using ACF and PACF plots (first 30 observations)



- Critical values: horizontal lines
- Reject null hypothesis where vertical bar beyond critical values
- ACF: spikes decay towards zero, coefficients may oscillate
- PACF: spikes decay to zero after lag p
- PACF hits lag 0 at 2  $\implies$  p = 1
- $\therefore$  model is AR(1)

#### **Results of AR(1)**

| Madal                   | Model Fit Statistics |       |        |                |  |
|-------------------------|----------------------|-------|--------|----------------|--|
| model                   | <b>R-Square</b>      | RMSE  | MAPE   | Normalized BIC |  |
| Continental B/F-Model_1 | 0.373                | 5.133 | 10.518 | 3.498          |  |

• Left: using actual value  $Y_t$ , right: using forecasted value  $F_t$  (here, k = 1)

$$(F_{t+1} - 38.890) = 0.731(Y_t - 38.890)$$

| Day | Y <sub>t</sub> | F <sub>t</sub> | $(Y_{t} - F_{t})^{2}$ | $ Y_t - F_t /Y_t$ |
|-----|----------------|----------------|-----------------------|-------------------|
| 31  | 45             | 44.08741       | 0.832821              | 0.02028           |
| 32  | 45             | 43.35641       | 2.701388              | 0.036524          |
| 33  | 46             | 43.35641       | 6.988568              | 0.057469          |
| 34  | 43             | 44.08741       | 1.182461              | 0.025289          |
| 35  | 40             | 41.89441       | 3.588789              | 0.04736           |
| 36  | 41             | 39.70141       | 1.686336              | 0.031673          |
| 37  | 41             | 40.43241       | 0.322158              | 0.013844          |

## MAPE 1.5721 RMSE 0.0332 (3.32%)

#### $(F_{t+k} - 38.890) = 0.731(F_{t+k-1} - 38.890)$

| Day | Y <sub>t</sub> | F <sub>t</sub> | $(Y_t - F_t)^2$ | $ Y_t - F_t /Y_t$ |
|-----|----------------|----------------|-----------------|-------------------|
| 31  | 45             | 44.0874        | 0.8328          | 0.0203            |
| 32  | 45             | 42.6893        | 5.3393          | 0.0513            |
| 33  | 46             | 41.6673        | 18.7723         | 0.0942            |
| 34  | 43             | 40.9202        | 4.3256          | 0.0484            |
| 35  | 40             | 40.3741        | 0.1399          | 0.0094            |
| 36  | 41             | 39.9749        | 1.0509          | 0.0250            |
| 37  | 41             | 39.6830        | 1.7344          | 0.0321            |

## MAPE 2.1446 RMSE 0.04009 (4.009%)

Example of AR Model



## 2. MA (Moving Average)

- Dependent model regressed against lagged values of past terms or error terms
- MA(q)
- Modelling the errors and not the terms themselves
- $Y_{t+1} = \mu + \alpha_1 \epsilon_t + \epsilon_{t+1}$
- MA(q) given by

• 
$$Y_{t+1} = \mu + \alpha_1 \epsilon_t + \alpha_2 \epsilon_{t-1} + \ldots + \alpha_q \epsilon_{t-q+1} + \epsilon_{t+1}$$

Order of MA(q)

- ACF: spikes decay to zero after lag of q
- PACF: spikes decay towards zero, coefficients may oscillate





## 3. AR(p) and MA(q) - ARMA(p,q)

- Stationary time series ACF and correlogram, Q-statistic
- AR(p): p lags of the dependent variable
- MA(q): q lags of the error term
- ARMA(p, q): autoregressive, moving average



1. Auto-correlation value,  $|\rho_p| > 1.96 / \sqrt{n}$  for first *q* values (first *q* lags) and cuts off to zero.

2. Partial auto-correlation function,  $|\rho_{pk}| > 1.96 / \sqrt{n}$  for first *p* values and cuts off to zero.

## Summary of Parameter Selections for AR, MA and ARMA

| Model               | ACF                         | PACF                                 |
|---------------------|-----------------------------|--------------------------------------|
| AR(p)               | Spikes decay towards zero.  | Spikes decay to zero                 |
|                     | Coefficients may oscillate. |                                      |
|                     | Spikes decay to zero after  | Spikes decay towards                 |
| MA $(q)$            | lag a                       | zero.                                |
|                     | ing q                       | Coefficients may<br>oscillate        |
|                     |                             |                                      |
| $\Delta DMA (p, q)$ | Spikes decay (either direct | direct or oscillatory)               |
| ARMA $(p,q)$        | beginning after lag q       | to zero beginning after lag <i>p</i> |



## Summary of AR, MA and ARMA Models

- Autoregressive AR process:
  - · Series current values depend on its own previous values
  - AR(p) Current values depend on its own p-previous values
  - P is the order of AR process
- Moving average MA process:
  - The current deviation from mean depends on previous deviations
  - MA(q) The current deviation from mean depends on q- previous deviations
  - q is the order of MA process
- Autoregressive Moving average ARMA process

## **Example of ARMA**

|                           | Month D | emand for Spares | Month D | emand for Spares |
|---------------------------|---------|------------------|---------|------------------|
| Monthly demand for        | 1       | 457              | 20      | 516              |
| avionic system spares     | 2       | 439              | 21      | 656              |
| used in Vimana 007        | 3       | 404              | 22      | 558              |
| aircraft is provided.     | 4       | 392              | 23      | 647              |
| Build an ARMA model       | 5       | 403              | 24      | 864              |
| based on the first 30     | 6       | 371              | 25      | 610              |
| months of data and        | 7       | 382              | 26      | 677              |
| forecast the demand       | 8       | 358              | 27      | 609              |
| for spares for months 31  | 9       | 594              | 28      | 673              |
| to 37. Comment on the     | 10      | 482              | 29      | 400              |
| accuracy of the forecast. | 11      | 574              | 30      | 443              |
|                           | 12      | 704              | 31      | 503              |
|                           | 13      | 486              | 32      | 688              |
|                           | 14      | 509              | 33      | 602              |
|                           | 15      | 537              | 34      | 629              |
|                           | 16      | 407              | 35      | 823              |
|                           | 17      | 523              | 36      | 671              |
|                           | 18      | 363              | 37      | 487              |
|                           | 19      | 479              |         |                  |

1. Plot ACF and PACF (use confidence limits)



FIGURE 13.9 ACF plot for avionic system spares deman

FIGURE 13.10 PACF plot for avionic system spares demand.

#### 2. Forecast ARMA (1, 2)

|                |        | Mode      |                         |        | I Fit Statistics |        |  |
|----------------|--------|-----------|-------------------------|--------|------------------|--------|--|
| Model          |        | Sta       | ationary <i>R</i> -Squa | ared R | MSE              | MAPE   |  |
| Avionic Spares |        |           | 0.429                   | 98     | 3.824            | 14.231 |  |
| TABLE 13.26    | \ mode | l paramet | ers                     |        |                  |        |  |
|                |        |           | Estimate                | SE     | T                | Sig.   |  |
|                | Со     | nstant    | 496.699                 | 57.735 | 8.603            | 0.000  |  |
| Avianis Conros | AR     | Lag 1     | 0.706                   | 0.170  | 4.153            | 0.000  |  |
| Avionic spares |        | Lag 1     | 0.694                   | 0.173  | 4.006            | 0.000  |  |
|                | MA     | Lag 2     | -0.727                  | 0.170  | -4.281           | 0.000  |  |

All the three components in the ARMA model (AR lag 1 and MA lags 1 and 2) are statistically significant (Table 13.26). The model equation using SPSS is given by

$$Y_{t+1} - 496.669 = 0.706 \times (Y_t - 496.699) - 0.694 \times \mathcal{E}_t + 0.727 \times \mathcal{E}_{t-1}$$
(13.45)

3. Compute MAPE, RMSE



TABLE 13.27 ARMA(1, 2) model forecast

| Month | Y <sub>t</sub> | F <sub>t</sub> | $(Y_t - F_t)^2$ | $ Y_t - F_t /Y_t$ |
|-------|----------------|----------------|-----------------|-------------------|
| 31    | 503            | 464.8107       | 1458.423        | 0.075923          |
| 32    | 688            | 378.5341       | 95769.15        | 0.449805          |
| 33    | 602            | 444.6372       | 24763.04        | 0.2614            |
| 34    | 629            | 685.8851       | 3235.909        | 0.090437          |
| 35    | 823            | 743.5124       | 6318.281        | 0.096583          |
| 36    | 671            | 630.7183       | 1622.614        | 0.060032          |
| 37    | 487            | 649.3491       | 26357.22        | 0.333366          |

The RMSE and MAPE for the validation data (months 31 and 37) are 150.961 0.1953 (19.53%), respectively (Table 13.27).

The forecasted values using  $F_t$  instead of  $Y_t$  when forecasting for more than one period ahead in time are shown in Table 13.28.

| <b>TABLE 13.28</b> | ARMA (1, 2)    | forecast       |                 |                 |
|--------------------|----------------|----------------|-----------------|-----------------|
| Month              | Y <sub>t</sub> | F <sub>t</sub> | $(Y_t - F_t)^2$ | $ Y_t - F_t /Y$ |
| 31                 | 503            | 464.4239       | 1488.1147       | 0.0767          |
| 32                 | 688            | 377.8374       | 96200.8258      | 0.4508          |
| 33                 | 602            | 444.5195       | 24800.1101      | 0.2616          |
| 34                 | 629            | 687.2082       | 3388.1980       | 0.0925          |
| 35                 | 823            | 744.9583       | 6090.4998       | 0.0948          |
| 36                 | 671            | 630.5592       | 1635.4571       | 0.0603          |
| 37                 | 487            | 648.3959       | 26048.6313      | 0.3314          |

The RMSE and MAPE for the validation data (months 31 and 37) are 151.02 and 0.1954 (19.54%), respectively.

# **Concept of Stationarity, DF, ADF**

## 1. Identifying Stationarity using ACF



• Slow decline and no cut-off to 0  $\implies$  non-stationarity

## 2. Quantitative Test - Dickey-Fuller (DF) Test

- AR(1) defined as
  - $Y_{t+1} = \beta Y_t + \epsilon_{t+1}$
- If |eta|>1, AR(1) process can become very large
- If |eta| = 1, non-stationary
- DF test is hypothesis test
  - $\circ~~H_0:eta=1$  (time-series is non-stationary)
  - $\circ \hspace{0.2cm} H_a:eta<1$  (time series is stationary)
- AR(1) written as
  - $Y_{t+1} Y_t = \Delta Y_t = (\beta 1)Y_t + \epsilon_{t+1} = \psi Y_t + \epsilon_{t+1}$ •  $\psi = \beta - 1$
- DF test in terms of  $\psi$ 
  - $H_0:\psi=0$  (time-series is non-stationary)
  - $\circ \hspace{0.2cm} H_{a}:\psi<0$  (time series is stationary)
- DF test statistic =  $\frac{\psi}{S_e(\psi)}$
- $\,S_e(\psi)$  is the standard error of  $\psi$

## 3. Augmented DF (ADF) Test

- DF test only valid if residual  $\epsilon_{t+1}$  follows a white noise
- When  $\epsilon_{t+1}$  is not white noise, actual series may not be AR(1)
  - May have more significant lags
- Solution: augment p-lags of the dependent variable  $\boldsymbol{Y}$

$$\circ ~~ \Delta Y_t = \psi Y_t + \sum\limits_{i=0}^p lpha_i \Delta Y_{t-i} + \epsilon_{t+1}$$

- Augmented DF test hypotheses
  - $\circ \hspace{0.1 in} H_{0}: \psi = 0$  (time-series is non-stationary)
  - $\circ \hspace{0.2cm} H_a:\psi < 0$  (time series is stationary)

# Differencing - Transforming Non-Stationary Signal to Stationary

- Order of differencing d to convert a non-stationary signal to a stationary signal
- Left and right difference (usually left difference)
- Due to trend
  - De-trending: fit a trend line and subtract it from the time-series

- Otherwise
  - Differencing TS process into difference stationary

## 1. First Difference

- d = 1
- Difference between consecutive values of the TS
- $\nabla Y_t = Y_t Y_{t-1}$

## 2. Second Difference

- d=2
- Difference of first differences
- $abla^2 Y_t = 
  abla (
  abla Y_t) = (Y_t Y_{t-1}) (Y_{t-1} Y_{t-2})$
- $abla^2 Y_t = Y_t 2Y_{t-1} + Y_{t-2}$

## **Differencing Example**

• Source: <u>https://otexts.com/fpp2/stationarity.html</u>



- The ACF of the Google stock price (left) and of the daily changes in Google stock price (right)
- The ACF of the differenced Google stock price looks just like that of a white noise series
- No autocorrelations outside 95% confidence interval



## **Random Walk Model**

- Differenced series  $abla Y_t = Y_t' = Y_t Y_{t-1}$
- First order differenced has only T-1 values (from second observation)
- If differenced series is white noise, model for original series

$$\circ \ Y_t - Y_{t-1} = \epsilon_t$$

• Rearranging: random walk model

$$\circ \ Y_t = Y_{t-1} + \epsilon_t$$

- Used for non-stationary data (financial, economic)
- Random walks
  - Long periods of apparent trends
  - Sudden unpredictable changes in direction
- Forecast of RW model: previous observation
- Future movements unpredictable
- Used as a benchmark to compare other models' performance

## Random Walk Model with Non-Zero Mean

- Mean *c*
- $Y_t Y_{t-1} = c + \epsilon_t$
- $Y_t = Y_{t-1} + c + \epsilon_t$
- Value of *c* is average of changes between consecutive observations

- If c > 0, average change is an increase in the value of  $Y_t$ 
  - $Y_t$  tends to drift upwards
- Else, drifts downwards

# **ARIMA Model**

- Auto Regressive Integrated Moving Average Model
- ARIMA(p, d, q)
- Integrated (I) series: series which needs to be differenced to be made stationary
- Lags of the stationarised series are called AR terms
- Lags of the forecast errors are called MA terms

## **Step 1: Model Identification**

• Identify right values of p, d, q



FIGURE 13.14 Model identification in ARIMA model.

## **Step 2: Parameter Estimation and Model Selection**

- Estimation of coefficients in AR and MA using OLS
- Criteria: RMSE, MAPE, Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC)
  - AIC, BIC: measures of distances from actual values to forecasted values
  - $\circ \ AIC = -2LL + 2K$  where
    - *LL* is the log likelihood function
    - K is number of parameters (orders) estimated  $\left(p+q
      ight)$
  - $\circ \quad BIC = -2LL + K\ln\left(n\right)$ 
    - *n* is number of observations

- Higher penalty than AIC for every additional variable added to model
- Low values of AIC, BIC preferred

## **Step 3: Model Validation**

- Satisfy all regression conditions
- Goodness of fit test: Ljung-Box test

## **ARIMA Filtering Box**

- Think of p, d and q as knobs
- Adjust knobs until residuals are white noise



## **ARIMA Models**

1. ARIMA(0,0,0) + c = constant model

 $\circ \ Y_{t+1} = c + \epsilon_{t+1}$ 

2. ARIMA(0,1,0) = random walk model

 $\circ \ Y_{t+1}-Y_t=\epsilon_{t+1}$ 

3. ARIMA(0,1,0)+c = random walk with drift

 $\circ$   $Y_{t+1}-Y_t=c+\epsilon_{t+1}$ 

4. ARIMA(1,0,0)+c = regress Y on  $Y_{lag1}$ 

 $\circ \ Y_{t+1} = \beta_1 \ Y_t + c + \epsilon_{t+1}$ 

5. ARIMA(1,1,0) + c = regress  $Y_{diff1}$  on  $Y_{diff1\_lag1}$ 

 $\circ Y_{t+1} - Y_t = \beta_1 \times (Y_t - Y_{t-1}) + c + \epsilon_{t+1}$ 6. ARIMA(2,1,0) + c = regress  $Y_{diff1}$  on  $Y_{diff1\_lag1}$  and  $Y_{diff1\_lag2}$ 

 $\circ \quad \Delta Y_{t+1} = \beta_1 \Delta Y_t + \beta_2 \Delta Y_{t-1} + c + \epsilon_{t+1}$ 

- 7. ARIMA(0,1,1) = SES model
  - $egin{array}{lll} \circ & Y_{t+1} Y_t = -lpha_1 \epsilon_t + \epsilon_{t+1} \ \circ & Y_{t+1} \epsilon_{t+1} = F_{t+1} = Y_t lpha_1 (Y_t F_t) \end{array}$

 $\circ$   $F_{t+1}=(1-lpha_1)Y_t+lpha_1F_t$ 

- 8. ARIMA(0,1,1)+c = SES model with constant linear trend
- 9. ARIMA(1,1,2) = LES with damped trend
- 10. ARIMA(0,2,2) = generalised LES
  - Usually,  $p+q\leq 2$
  - If differenced, it must be un-differenced

#### **Rules of Thumb**

- If stationarised series has positive autocorrelation at lag 1, AR terms oftern work best
  - Compensate for the lack of nonseasonal difference
- If stationarised series has negative autocorrelation at lag 1, MA terms oftern work best
  - Fine-tune the effect of nonseasonal difference
- Look at 05.1 slides

# SARIMA Model

- Seasonal ARIMA
- Seasonality
  - *P*: number of seasonal autoregressive terms
  - *D*: number of seasonal differences
  - Q: number of seasonal moving average terms
- Complete model: SARIMA(p, d, q)(P, D, Q)
- Filtering box (tune like knobs)



#### **Seasonal Differences**

• Combine non-seasonal and seasonal differences

If d=0, D=1:  $y_t = Y_t - Y_{t-s}$  is the seasonal period, e.g., s=12 for monthly data If d=1, D=1:  $y_t = (Y_t - Y_{t-1}) - (Y_{t-s} - Y_{t-s-1})$  $= Y_t - Y_{t-1} - Y_{t-s} + Y_{t-s-1}$ 

*D* should never be more than 1, and d+D should never be more than 2. Also, if d+D=2, the constant term should be suppressed.

## SAR and SMA terms

- Setting P=1 (SAR) adds multiple of  $y_{t-s}$  to the forecast for  $y_t$
- Setting Q=1 (SMA) adds a multiple of  $\epsilon_{t-s}$  to the forecast for  $y_t$
- SAR + SMA should never exceed 1

# Ljung-Box Test for Autocorrelations

- Checks if auto-correlations are non-zero
- Null and alt hypotheses
  - $H_0$ : model does not show lack of fit (model is a good fit)
  - $H_a$ : model shows lack of fit
- Test statistic: *Q*-statistic

$$\circ \ Q(m) = n(n+2) \sum_{k=1}^m rac{
ho_k^2}{n-k}$$

- m is total number of lags
- n is number of observations
- k is number of lags
- $\circ ~
  ho_k$  is the autocorrelation of lag k
- Q-statistic is chi-square distribution with m-p-q degrees of freedom
- The Q-statistic for ARIMA(1, 1, 1) is 10.216 (Table 1) and the corresponding *p*-value is 0.855 and thus we fail to reject the null hypothesis.
- Table 1: ARIMA (1, 1, 1) model summary for Omelette demand

| Madal             | Model Fit Statistics |       |        | Ljung—Box <i>Q</i> (18) |    |       |
|-------------------|----------------------|-------|--------|-------------------------|----|-------|
| Model             | <b>R</b> -Squared    | RMSE  | MAPE   | Statistics              | Df | Sig.  |
| Omellette-Model_1 | 0.584                | 3.439 | 20.830 | 10.216                  | 16 | 0.855 |

• Q(m) measures accumulated auto-correlation up to lag m.

# **Thiel's Coefficient**

- Comparision of forecasting model to naive forecast
- $F_{t+1} = Y_t$

| Day | Y <sub>t</sub> | ARMA (1,2) Forecast | $(Y_t - F_t)^2$ | Naïve Forecast ( $F_{t+1} = Y_t$ ) | $(Y_t - F_t)^2$ |
|-----|----------------|---------------------|-----------------|------------------------------------|-----------------|
| 31  | 503            | 464.8107            | 1458.423        | 443                                | 3600            |
| 32  | 688            | 378.5341            | 95769.15        | 503                                | 34225           |
| 33  | 602            | 444.6372            | 24763.04        | 688                                | 7396            |
| 34  | 629            | 685.8851            | 3235.909        | 602                                | 729             |
| 35  | 823            | 743.5124            | 6318.281        | 629                                | 37636           |
| 36  | 671            | 630.7183            | 1622.614        | 823                                | 23104           |
| 37  | 487            | 649.3491            | 26357.22        | 671                                | 33856           |
|     |                | Total               | 159524.6        | Total                              | 140546          |

• U-statistic

$$\circ \ U = rac{{\sum\limits_{t = 1}^n (Y_{t+1} - F_{t+1})^2 }}{{\sum\limits_{t = 1}^n (Y_{t+1} - Y_t)^2 }}$$

- Ratio of SSE of forecasting to SSE of naive model
- If U < 1, forecasting doing better than naive
- If U > 1, forecasting doing worse than naive

## The X Factor (ARX, ARIMAX)

- X: exogenous variables
- Other factors that influence the forecast (domain knowledge)
- How to integrate it into the model?

## **Spectral Analysis of TS Data**

## **Discrete Fourier Transform of the Time Series**

- Function of time to function of frequencies
- Discrete FT of time series  $x_1, \ldots, x_n$

$$egin{aligned} &\circ & d(\omega_j) = \sqrt{n}\sum\limits_{t=1}^n x_t e^{j\, imes - 2\pi t \omega_j} \ &\circ & d(\omega_j) = \sqrt{n}\sum\limits_{t=1}^n x_t \cos\left(j\,2\pi \omega_j t
ight) - j\sqrt{n}\sum\limits_{t=1}^n x_t \sin\left(j\,2\pi \omega_j t
ight) \end{aligned}$$

- Periodogram:  $I(\omega_j)$ 
  - $\circ |d(\omega_j)|^2 = d_c^2(\omega_j) + d_s^2(\omega_j)$
  - Cosine and sine components, re and im components
  - $\circ~$  If no periodic trend in data,  $E[d(\omega_j)]=0$  and periodogram expresses variance of  $x_t$  at frequency  $\omega_j$

If periodic trend exists, *E*[*d*(*ω<sub>j</sub>*)] is the contribution to the preiodic trend at the frequency *ω<sub>j</sub>*Eg: The series is *n* = 128 values of brain cortex activity, measured every 2 seconds for 256 seconds. A stimulus, brushing of the back of the hand, was applied for 32 seconds and then was stopped for 32 seconds. This pattern was repeated for a total of 256 seconds. The series is actually the average of this process for five different subjects.



## **Wavelet Transformation**

- Finite portion of a signal
- Similar to FT
- Read slides for more

## More

- DL
- Classifier chains
- MDP, RL
- Read slides